Skip to main content
Log in

Solution-Processed Hybrid Ambipolar Thin-Film Transistors Fabricated at Low Temperature

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We demonstrate solution-processed hybrid ambipolar thin-film transistors (TFTs) employing a stack structure composed of indium–gallium–zinc-oxide (IGZO) and single-wall carbon nanotube (SWCNT) as an active channel fabricated at low temperature. With an optimized deep-ultraviolet (DUV) photo annealing process for sol–gel based IGZO thin film on SWCNT random networks, the ambipolar transport of both electrons and holes with good electrical characteristics was realized. We also investigate the effect of DUV photo annealing on the material characteristics of solution-processed hybrid stack films and on the device performance of solution-processed hybrid ambipolar TFTs compared to those of samples thermally annealed at 500 °C, which is required for solution-processed high-quality IGZO thin films. The Raman spectra show that DUV photo annealing ensures hole transport in SWCNT random networks of a hybrid stack film, where the intensity of the 2D peak to the G peak was not changed compared to that of pristine SWCNT random networks. We believe that these analytical investigations reveal that DUV photo annealing is a promising method by which to realize hybrid ambipolar SWCNT/IGZO TFTs fabricated at low temperature.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li, Y., Yang, J., Wang, Y., Ma, P., Yuan, Y., Zhang, J., Lin, Z., Zhou, L., Xin, Q., Song, A.: IEEE Electr. Device Lett. 39, 208 (2018)

    Article  Google Scholar 

  2. Luo, H., Liang, L., Cao, H., Dai, M., Lu, Y., Wang, M.: ACS Appl. Mater. Interfaces 7, 17023 (2015)

    Article  Google Scholar 

  3. Yu, M., Wan, H., Cai, L., Miao, J., Zhang, S., Wang, C.: ACS Nano 12, 11572 (2018)

    Article  Google Scholar 

  4. Xu, X., Xiao, T., Gu, X., Yang, X., Kershaw, S.V., Zhao, N., Xu, J., Miao, Q.: ACS Appl. Mater. Interfaces 7, 28019 (2015)

    Article  Google Scholar 

  5. Yang, C., Kwack, Y., Kim, S.H., An, T.K., Hong, K., Nam, S., Park, M., Choi, W.-S., Park, C.E.: Org. Electron. 12, 411 (2011)

    Article  Google Scholar 

  6. Liu, P.-T., Chou, Y.-T., Teng, L.-F., Fuh, C.-S.: Appl. Phys. Lett. 97, 083505 (2010)

    Article  Google Scholar 

  7. Ha, T.-J., Dodabalapur, A.: Appl. Phys. Lett. 102, 123506 (2013)

    Article  Google Scholar 

  8. Cao, X., Cao, Y., Zhou, C.: ACS Nano 10, 199 (2016)

    Article  Google Scholar 

  9. Liu, C., Liu, X., Minari, T., Kanehara, M., Noh, Y.-Y.: J. Inf. Disp. 19, 71 (2018)

    Article  Google Scholar 

  10. Ding, X., Huang, F., Li, S., Zhang, J., Jiang, X., Zhang, Z.: Electron. Mater. Lett. 13, 45 (2017)

    Article  Google Scholar 

  11. Kim, B., Liang, K., Geier, M.L., Hersam, M.C., Dodabalapur, A.: Appl. Phys. Lett. 109, 023515 (2016)

    Article  Google Scholar 

  12. Ha, T.-J., Chen, K., Chuang, S., Yu, K.M., Kiriya, D., Javey, A.: Nano Lett. 15, 392 (2015)

    Article  Google Scholar 

  13. Luo, H., Liang, L.Y., Liu, Q., Cao, H.T.: ECS J. Solid State Sci. 3, Q3091 (2014)

    Article  Google Scholar 

  14. Kim, W.-G., Tak, Y.J., Kim, H.J.: J. Inf. Disp. 19, 39 (2018)

    Article  Google Scholar 

  15. Kim, Y.-H., Heo, J.-S., Kim, T.-H., Park, S., Yoon, M.-H., Kim, J., Oh, M.S., Yi, G.-R., Noh, Y.-Y., Park, S.K.: Nature 489, 128 (2012)

    Article  Google Scholar 

  16. Ha, T.-J., Kiriya, D., Chen, K., Javey, A.: ACS Appl. Mater. Interfaces 6, 8441 (2014)

    Article  Google Scholar 

  17. Gong, Y., Liu, Q., Wilt, J.S., Gong, M., Ren, S., Wu, J.: Sci. Rep. 5, 11328 (2015)

    Article  Google Scholar 

  18. Heo, J.-S., Kim, J.-H., Kim, J., Kim, M.-G., Kim, Y.-H., Park, S.K.: IEEE Electr. Device Lett. 36, 162 (2015)

    Article  Google Scholar 

  19. Hwang, S., Lee, J.H., Woo, C.H., Lee, J.Y., Cho, H.K.: Thin Solid Films 519, 5146 (2011)

    Article  Google Scholar 

  20. Ning, H., Zeng, Y., Zheng, Z., Zhang, H., Fang, Z., Yao, R., Hu, S., Li, X., Peng, J., Xie, W., Lu, X.: IEEE Trans. Electron Dev. 65, 537 (2018)

    Article  Google Scholar 

  21. Kim, S.-N., Son, W.-J., Choi, J.-S., Ahn, W.-S.: Microporous Mesoporous Mater. 115, 497 (2008)

    Article  Google Scholar 

  22. Huang, H.-Y., Wang, S.-J., Wu, C.-H., Lu, C.-Y.: Electron. Mater. Lett. 10, 899 (2014)

    Article  Google Scholar 

  23. Kim, G.H., Jeong, W.H., Kim, H.J.: Phys. Status Solidi A 207, 1677 (2010)

    Article  Google Scholar 

  24. Kim, S.J., Kim, G.H., Kim, D.L., Kim, D.N., Kim, H.J.: Phys. Status Solidi A 207, 1668 (2010)

    Article  Google Scholar 

  25. Pu, H., Zhou, Q., Yue, L., Zhang, Q.: Appl. Surf. Sci. 283, 722 (2013)

    Article  Google Scholar 

  26. Lim, J.H., Shim, J.H., Choi, J.H., Joo, J., Park, K., Jeon, H., Moon, M.R., Jung, D., Kim, H., Lee, H.-J.: Appl. Phys. Lett. 95, 012108 (2009)

    Article  Google Scholar 

  27. Kim, M.J., Heo, Y.M., Cho, J.H.: Org. Electron. 43, 41 (2017)

    Article  Google Scholar 

  28. Sanctis, S., Hoffmann, R.C., Koslowski, N., Foro, S., Bruns, M., Schneider, J.J.: Chem. A Asian J. 13, 3912 (2018)

    Article  Google Scholar 

  29. Kusaka, Y., Shirakawa, N., Ogura, S., Leppaniemi, J., Sneck, A., Alastalo, A., Ushijima, H., Fukuda, N.: ACS Appl. Mater. Interfaces 10, 24339 (2018)

    Article  Google Scholar 

  30. Kwon, H.-J., Jang, J., Kim, S., Subramanian, V., Grigoropoulos, C.P.: Appl. Phys. Lett. 105, 152105 (2014)

    Article  Google Scholar 

  31. Im, H., Kim, T., Song, H., Choi, J., Park, J.S., Ovalle-Robles, R., Yang, H.D., Kihm, K.D., Baughman, R.H., Lee, H.H., Kang, T.J., Kim, Y.H.: Nat. Commun. 7, 10600 (2016)

    Article  Google Scholar 

  32. Jo, J.-W., Kim, K.-T., Facchetti, A., Kim, M.-G., Park, S.K.: IEEE Electr. Device Lett. 39, 1668 (2018)

    Article  Google Scholar 

  33. Pennetreau, F., Riant, O., Hermans, S.: Chem. Eur. J. 20, 15009 (2014)

    Article  Google Scholar 

  34. Li, M., Wang, J., Cai, X., Liu, F., Li, X., Wang, L., Liao, L., Jiang, C.: Adv. Electron. Mater. 4, 1800211 (2018)

    Article  Google Scholar 

  35. Kim, B., Jang, S., Geier, M.L., Prabhumirashi, P.L., Hersam, M.C., Dodabalapur, A.: Appl. Phys. Lett. 104, 062101 (2014)

    Article  Google Scholar 

  36. Choi, W.B., Chung, D.S., Kang, J.H., Kim, H.Y., Jin, Y.W., Han, I.T., Lee, Y.H., Jung, J.E., Lee, N.S., Park, G.S., Kim, J.M.: Appl. Phys. Lett. 75, 3129 (1999)

    Article  Google Scholar 

  37. Goto, T., Sugawa, S., Ohmi, T.: J. Soc. Inf. Disp. 21, 517 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea grant funded by the Korea government (MSIT) (NRF-2017R1A2B2003808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Jun Ha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, JY., Yu, BS., Kim, YH. et al. Solution-Processed Hybrid Ambipolar Thin-Film Transistors Fabricated at Low Temperature. Electron. Mater. Lett. 15, 402–408 (2019). https://doi.org/10.1007/s13391-019-00142-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00142-x

Keywords

Navigation