Advertisement

Electronic Materials Letters

, Volume 15, Issue 4, pp 396–401 | Cite as

Synthesis and Characterization of Plasma-Polymer Gate Dielectric Films for Graphene Field Effect Transistor Devices

  • Hyeon Jin Seo
  • Yeong Eun Gil
  • Ki-Hwan Hwang
  • Antony Ananth
  • Jin-Hyo BooEmail author
Original Article - Electronics, Magnetics and Photonics
  • 187 Downloads

Abstract

In this study, a gate dielectric suitable for application in field effect transistors (FETs) was synthesized. Gate dielectrics were deposited using cyclohexane via plasma-enhanced chemical vapor deposition. These films were synthesized on silicon wafers substrates with plasma powers adjusted from 10 to 60 W. Graphene was synthesized on a nickel substrate by a thermal chemical vapor deposition process and coupled to the plasma-polymer via water transfer. Alpha step, Fourier-transform infrared spectroscopy, Raman spectroscopy, and atomic force microscopy findings in addition to water contact angle measurements were analyzed to characterize the physical and chemical properties of the plasma-polymer thin film. Furthermore, a probe station was used to characterize the FET devices fabricated using such films.

Graphical Abstract

Keywords

PECVD Gate dielectric Graphene Field-effect transistor 

Notes

Acknowledgements

This work was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Korean government (NRF-2017R1D1A1B07051012, NRF-2017R1D1A1B03029848).

References

  1. 1.
    Kim, B.J., Jang, H., Lee, S.-K., Hong, B.H., Ahn, J.-H., Cho, J.H.: High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett. 10, 3464–3466 (2010)CrossRefGoogle Scholar
  2. 2.
    Lu, C.-C., Lin, Y.-C., Yeh, C.-H., Huang, J.-C., Chiu, P.-W.: High mobility flexible graphene field-effect transistors with self-healing gate dielectrics. ACS Nano 6, 4469–4474 (2012)CrossRefGoogle Scholar
  3. 3.
    Huang, C.K., Ou, Y.X., Bie, Y.Q., Zhao, Q., Yu, D.P.: Enhanced field emission from large scale uniform monolayer graphene supported by well-aligned ZnO nanowire arrays. Appl. Phys. Lett. 98, 173107 (2011)CrossRefGoogle Scholar
  4. 4.
    Wu, Z.S., Pei, S.F., Ren, W.C., Tang, D.M., Gao, L.B., Liu, B.L., Li, F., Liu, C., Cheng, H.M.: Field emission of single-layer graphene films prepared by electrophoretic deposition. Adv. Mater. 21, 1756–1760 (2009)CrossRefGoogle Scholar
  5. 5.
    Na, Y.E., Han, J.H., Yeo, J.-S.: Approaches to reduce the contact resistance by the formation of covalent contacts in graphene thin film transistors. Appl. Sci. Converg. Technol. 26, 55–61 (2017)CrossRefGoogle Scholar
  6. 6.
    Zhan, B., Li, C., Yang, J., Jenkins, G., Huang, W., Dong, X.: Graphene field-effect transistor and its application for electronic sensing. Small 10, 4042–4065 (2014)CrossRefGoogle Scholar
  7. 7.
    Wang, C., Chen, W., Han, C., Wang, G., Tang, B., Tang, C., Wang, Y., Zou, W., Chen, W., Zhang, X.-A., Qin, S., Chang, S., Wang, L.: Growth of millimeter-size single crystal graphene on cu foils by circumfluence chemical vapor deposition. Sci. Rep. 4, 4537 (2014)CrossRefGoogle Scholar
  8. 8.
    Geim, A.K., Novoselov, K.S.: The rise of grapheme. Nat. Mater. 6, 183 (2007)CrossRefGoogle Scholar
  9. 9.
    Geim, A.K.: Graphene: status and prospects. Science 324, 1530–1534 (2009)CrossRefGoogle Scholar
  10. 10.
    Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of grapheme. Rev. Mod. Phys. 81, 109–162 (2009)CrossRefGoogle Scholar
  11. 11.
    Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010)CrossRefGoogle Scholar
  12. 12.
    Wang, L., Meric, I., Huang, P.Y., Gao, Q., Gao, Y., Tran, H., Taniguchi, T., Watanabe, K., Campos, L.M., Muller, D.A., Guo, J., Kim, P., Hone, J., Shepard, K.L., Dean, C.R.: One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013)CrossRefGoogle Scholar
  13. 13.
    Jo, I.S., Kim, Y.S., Moon, J.H., Park, S.B., Moon, J.S., Park, W.B., Lee, J.S., Hong, B.H.: Stable n-type doping of graphene via high-molecular-weight ethylene amines. Phys. Chem. Chem. Phys. 17, 29492–29495 (2015)CrossRefGoogle Scholar
  14. 14.
    Wang, C., Dong, H., Hu, W., Liu, Y., Zhu, D.: Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 112, 2208–2267 (2012)CrossRefGoogle Scholar
  15. 15.
    Silverstein, R.M., Webster, F.X., Kiemle, D.J.: Spectrometric Identification of Organic Compounds. Wiley, New York (2005)Google Scholar
  16. 16.
    Bae, I.-S., Cho, S.-J., Choi, W.S., Cho, H.J., Hong, B.Y., Jeong, H.-D., Boo, J.-H.: Characterization on polymerized thin films for low-k insulator using PECVD. Prog. Org. Coat. 61, 245–248 (2008)CrossRefGoogle Scholar
  17. 17.
    Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of ChemistrySungkyunkwan UniversitySuwonRepublic of Korea
  2. 2.Institute of Basic ScienceSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations