Skip to main content
Log in

Amorphous V2O5 Positive Electrode Materials by Precipitation Method in Magnesium Rechargeable Batteries

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Amorphous vanadium pentoxide (a-V2O5) was prepared via the precipitation method, for use as a positive-electrode material in magnesium rechargeable batteries (MRBs). Amorphous metal oxides can be good candidates as the host materials for the Mg divalent ion because of many vacancies and huge void spaces. Furthermore, amorphous metal oxides generally do not experience a phase change during cycles. The electrochemical characteristics of the a-V2O5 and c-V2O5 (crystalline vanadium pentoxide) were evaluated and compared. Both a-V2O5 and c-V2O5 can store over 150 mAh/g of the Li+ ion in activated carbon (AC)/V2O5 cells, however, Mg2+ ion cannot be stored in both a-V2O5 and c-V2O5 in the first cycle. But, the specific capacity of a-V2O5 gradually increases up to 180 mAh/g after the 10th cycle, whereas c-V2O5 cannot react continuously. Therefore, the a-V2O5, which has a large specific capacity and high reaction voltage, can be a good candidate as a host material for MRBs because its amorphous structure has the advantage of the multi-valent ion storage.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Besenhard, J.O., Winter, M.: Advances in battery technology: rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries. ChemPhysChem 3, 155 (2002)

    Article  Google Scholar 

  2. Tarascon, J.-M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001)

    Article  Google Scholar 

  3. Yoo, H.D., Shterenberg, I., Gofer, Y., Gershinsky, G., Pour, N., Aurbach, D.: Mg rechargeable batteries: an on-going challenge. Energy Environ. Sci. 6, 2265 (2013)

    Article  Google Scholar 

  4. Liebenow, C.: Reversibility of electrochemical magnesium deposition from Grignard solutions. J. Appl. Electrochem. 27, 221 (1997)

    Article  Google Scholar 

  5. Mohtadi, R., Mizuno, F.: Current state of the art, issues and future perspectives. Beilstein J. Nanotechnol. 5, 1291 (2014)

    Article  Google Scholar 

  6. Muldoon, J., Bucur, C.B., Gregory, T.: Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem. Rev. 114, 11683 (2014)

    Article  Google Scholar 

  7. Aurbach, D., Lu, Z., Schechter, A., Gofer, Y., Gizbar, H., Turgeman, R., Cohen, Y., Moshkovich, M., Levi, E.: Prototype systems for rechargeable magnesium batteries. Nature 407, 724 (2000)

    Article  Google Scholar 

  8. Tang, H., Peng, Z., Wu, L., Xiong, F., Pei, C., An, Q., Mai, L.: Vanadium-Based cathode materials for rechargeable multivalent batteries: challenges and opportunities. Electrochem. Energy Rev. 1, 169 (2018)

    Article  Google Scholar 

  9. Su, S., Huang, Z., NuLi, Y., Tuerxun, F., Yang, J., Wang, J.: A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. Chem. Commun. 51, 2641 (2015)

    Article  Google Scholar 

  10. Gershinsky, G., Yoo, H.D., Gofer, Y., Aurbach, D.: Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 29, 10964 (2013)

    Article  Google Scholar 

  11. Arthur, T.S., Kato, K., Germain, J., Guo, J., Glans, P.-A., Liu, Y.-S., Holmes, D., Fan, X., Mizuno, F.: Amorphous V2O5–P2O5 as high-voltage cathodes for magnesium batteries. Chem. Commun. 51, 15657 (2015)

    Article  Google Scholar 

  12. Chae, O.B., Kim, J., Park, I., Jeong, H., Ku, J.H., Ryu, J.H., Kang, K., Oh, S.M.: Reversible lithium storage at highly populated vacant sites in an amorphous vanadium pentoxide electrode. Chem. Mater. 26, 5874 (2014)

    Article  Google Scholar 

  13. Ku, J.H., Ryu, J.H., Kim, S.H., Han, O.H., Oh, S.M.: Reversible lithium storage with high mobility at structural defects in amorphous molybdenum dioxide electrode. Adv. Funct. Mater. 22, 3658 (2012)

    Article  Google Scholar 

  14. Jang, J., Kim, S.-M., Kim, Y., Park, K.H., Ku, J.H., Ryu, J.H., Oh, S.M.: Electrode performances of amorphous molybdenum oxides of different molybdenum valence for lithium-ion batteries. Isr. J. Chem. 55, 604 (2015)

    Article  Google Scholar 

  15. Kim, T.A., Kim, J.H., Kim, M.G., Oh, S.M.: Li+ storage sites in amorphous V2O5 prepared by precipitation method. J. Electrochem. Soc. 150, A985 (2003)

    Article  Google Scholar 

  16. Kim, D.-M., Kim, Y., Arumugam, D., Woo, S.W., Jo, Y.N., Park, M.-S., Kim, Y.-J., Choi, N.-S., Lee, K.T.: Co-intercalation of Mg2+ and Na+ in Na0.69Fe2(CN)6 as a high-voltage cathode for magnesium batteries. ACS Appl. Mater. Interfaces. 8, 8554 (2016)

    Article  Google Scholar 

  17. Tepavcevic, S., Liu, Y., Zhou, D., Lai, B., Maser, J., Zuo, X., Chan, H., Král, P., Johnson, C.S., Stamenkovic, V., Markovic, N.M., Rajh, T.: Nanostructured layered cathode for rechargeable Mg-ion batteries. ACS Nano 9, 8194 (2015)

    Article  Google Scholar 

  18. Jiao, L.-F., Yuan, H.-T., Si, Y.-C., Wang, Y.-J., Wang, Y.-M.: Synthesis of Cu0.1-doped vanadium oxide nanotubes and their application as cathode materials for rechargeable magnesium batteries. Electrochem. Commun. 8, 1041 (2006)

    Article  Google Scholar 

  19. Huang, Z.-D., Masese, T., Orikasa, Y., Mori, T., Minato, T., Tassel, C., Kobayashi, Y., Kageyama, H., Uchimoto, Y.: MgFePO4F as a feasible cathode material for magnesium batteries. J. Mater. Chem. A 2, 11578 (2014)

    Article  Google Scholar 

  20. Liang, Y., Yoo, H.D., Li, Y., Shuai, J., Calderon, H.A., Hernandez, F.C.R., Grabow, L.C., Yao, Y.: Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett. 15, 2194 (2015)

    Article  Google Scholar 

  21. He, D., Wu, D., Gao, J., Wu, X., Zeng, X., Ding, W.: Flower-like CoS with nanostructures as a new cathode-active material for rechargeable magnesium batteries. J. Power Sources 294, 643 (2015)

    Article  Google Scholar 

  22. Liu, B., Luo, T., Mu, G., Wang, X., Chen, D., Shen, G.: Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. ACS Nano 7, 8051 (2013)

    Article  Google Scholar 

  23. Sun, X., Bonnick, P., Duffort, V., Liu, M., Rong, Z., Persson, K.A., Ceder, G., Nazar, L.F.: A high capacity thiospinel cathode for Mg batteries. Energy Environ. Sci. 9, 2273 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Korea Electric Power Corporation (Grant number: R18XA06-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Heon Ryu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Ryu, J.H. Amorphous V2O5 Positive Electrode Materials by Precipitation Method in Magnesium Rechargeable Batteries. Electron. Mater. Lett. 15, 415–420 (2019). https://doi.org/10.1007/s13391-019-00138-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00138-7

Keywords

Navigation