Skip to main content
Log in

Copper–Nickel Alloy Plating to Improve the Contact Resistivity of Metal Grid on Silicon Heterojunction Solar Cells

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

As a dominant metallization technique of crystalline silicon solar cells, screen printing with silver paste has been generally used in photovoltaic industries. In case of the silicon heterojunction solar cells (SHJ) structure, a metal contact with silver paste has lower electrical conductivity than pure silver due to the other compositions of the paste. For the reason, copper plating is attractive substitute for the silver paste since the plated-copper contacts have high conductivity and easily reduce line width which is beneficial to light absorption. In this experiment, we studied copper–nickel (Cu–Ni) alloy plating to form a seed layer of the copper plating on an indium tin oxide (ITO) layer which is used for the transparent conductive oxide of the SHJ solar cells. As a requirement of suitable seed layer, contact resistivity (ρc) between the seed and the ITO is important to obtain high fill factor by decreasing series resistance of solar cells. Contact resistivity values of the samples with varied nickel contents in the Cu–Ni films were extracted by using transfer length method. Also, the composition ratio of the alloy layer was analyzed by energy dispersive spectrometer. Moreover, X-ray diffraction was used to compare lattice parameter and crystallite size of the film.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Heng, J.B., Fu, J., Kong, B., Chae, Y., Wang, W., Xie, Z., Reddy, A., Lam, K., Beitel, C., Liao, C.: > 23% High-efficiency tunnel oxide junction bifacial solar cell with electroplated Cu gridlines. IEEE J. Photovolt 5(1), 82–86 (2015)

    Article  Google Scholar 

  2. Kleider, J.-P., Alvarez, J., Brézard-Oudot, A., Gueunier-Farret, M.-E., Maslova, O.: Revisiting the theory and usage of junction capacitance: application to high efficiency amorphous/crystalline silicon heterojunction solar cells. Sol. Energy Mater. Sol. C 135, 8–16 (2015)

    Article  Google Scholar 

  3. Mishima, T., Taguchi, M., Sakata, H., Maruyama, E.: Development status of high-efficiency HIT solar cells. Sol Energy Mater Sol. C 95(1), 18–21 (2011)

    Article  Google Scholar 

  4. Wang, Q., Page, M., Iwaniczko, E., Xu, Y., Roybal, L., Bauer, R., To, B., Yuan, H.-C., Duda, A., Hasoon, F.: Efficient heterojunction solar cells on p-type crystal silicon wafers. Appl. Phys. Lett. 96(1), 013507 (2010)

    Article  Google Scholar 

  5. De Wolf, S., Descoeudres, A., Holman, Z.C., Ballif, C.: High-efficiency silicon heterojunction solar cells: a review. Green 2(1), 7–24 (2012)

    Google Scholar 

  6. Adachi, D., Hernández, J.L., Yamamoto, K.: Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency. Appl. Phys. Lett. 107(23), 233506 (2015)

    Article  Google Scholar 

  7. Yoshikawa, K., Yoshida, W., Irie, T., Kawasaki, H., Konishi, K., Ishibashi, H., Asatani, T., Adachi, D., Kanematsu, M., Uzu, H.: Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Sol. Energy Mater Sol. C 173, 37–42 (2017)

    Article  Google Scholar 

  8. Fernandez, F.Z., Descoeudres, A., Choong, G., Bôle, P., Barraud, L., Wolf, S.d., Ballif, C.: Metallisation for silicon heterojunction solar cells. In: Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition, pp. 1669–1672 (2010)

  9. De Wolf, S., Kondo, M.: Boron-doped a-Si: H∕ c-Si interface passivation: degradation mechanism. Appl. Phys. Lett. 91(11), 112109 (2007)

    Article  Google Scholar 

  10. Papet, P., Hermans, J., Söderström, T., Cucinelli, M., Andreetta, L., Bätzner, D., Frammelsberger, W., Lachenal, D., Meixenberger, J., Legradic, B., Strahm, B., Wahli, G., Brok, W., Geissbühler, J., Tomasi, A., Ballif, C., Vetter, E., Leu, S.: Heterojunction solar cells with electroplated Ni/Cu front electrode. In: Proceedings of the 28th European Photovoltaic Solar Energy Conference, pp. 1976–1979 (2013)

  11. Geissbühler, J., De Wolf, S., Faes, A., Badel, N., Jeangros, Q., Tomasi, A., Barraud, L., Descoeudres, A., Despeisse, M., Ballif, C.: Silicon heterojunction solar cells with copper-plated grid electrodes: status and comparison with silver thick-film techniques. IEEE J. Photovolt. 4(4), 1055–1062 (2014)

    Article  Google Scholar 

  12. Heng, J.B., Fu, J., Kong, B., Chae, Y., Wang, W., Xie, Z., Reddy, A., Lam, K., Beitel, C., Liao, C., Erben, C., Huang, Z., Xu, Z.: > 23.1% High efficiency tunnel oxide junction bifacial solar cell with electroplated Cu gridlines. In: Proceedings of the 29th European Photovoltaic Solar Energy Conference, pp. 492–496 (2014)

  13. Yu, J., Bian, J., Duan, W., Liu, Y., Shi, J., Meng, F., Liu, Z.: Tungsten doped indium oxide film: ready for bifacial copper metallization of silicon heterojunction solar cell. Sol. Energy Mater. Sol. C 144, 359–363 (2016)

    Article  Google Scholar 

  14. Munoz, D., Ozanne, F., Salvetat, T., Enjalbert, N., Fortin, G., Pihan, E., Jay, F., Jouini, A., Ribeyron, P.: Strategies of cost reduction and high performance on a-Si: H/c-Si heterojunction solar cells: 21% efficiency on monolike substrate. In: Proceedings of the 39th IEEE Photovoltaic Specialists Conference, pp. 3071–3073 (2013)

  15. Khanna, A., Ritzau, K.-U., Kamp, M., Filipovic, A., Schmiga, C., Glatthaar, M., Aberle, A.G., Mueller, T.: Screen-printed masking of transparent conductive oxide layers for copper plating of silicon heterojunction cells. Appl. Surf. Sci. 349, 880–886 (2015)

    Article  Google Scholar 

  16. Li, Z., Hsiao, P.-C., Zhang, W., Chen, R., Yao, Y., Papet, P., Lennon, A.: Patterning for plated heterojunction cells. Energy Proced. 67, 76–83 (2015)

    Article  Google Scholar 

  17. Hernández, J.L., Adachi, D., Yoshikawa, K., Schroos, D., Assche, E.V., Feltrin, A., Valckx, N., Menou, N., Poortmans, J., Yoshimi, M., Uto, T., Uzu, H., Hino, M., Kawasaki, H., Kanematsu, M., Nakano, K., Mishima, R., Kuchiyama, T., Koizumi, G., Allebé, C., Terashita, T., Hiraishi, M., Nakanishi, N., Yamamoto, K.: High efficiency copper electroplated heterojunction solar cells. In: Proceeding of the 27th European Photovoltaic Solar Energy Conference, pp. 655–656 (2012)

  18. Muñoz, D., Desrues, T., Ozanne, A.-S., Vecchi, S.d., Nicolàs, S.M.d., F. Jay, F.S., Nguyen, N., Denis, C., Arnal, C., d’Alonzo, G., Coignus, J., Favre, W., Blevin, T., Valla, A., Ozanne, F., Salvetat, T., Ribeyron, P.J.: Key aspects on development of high efficiency heterojunction and IBC-heterojunction solar cells: towards 22% efficiency on industrial size. In: Proceeding of the 27th European Photovoltaic Solar Energy Conference, pp. 576–579 (2012)

  19. Aguilar, A., Herasimenka, S.Y., Karas, J., Jain, H., Lee, J., Munoz, K., Michaelson, L., Tyson, T., Dauksher, W.J., Bowden, S.: Development of Cu plating for silicon heterojunction solar cells. In: Proceedings of the 43rd Photovoltaic Specialists Conference, pp. 1972–1975 (2016)

  20. Rodofili, A., Wolke, W., Kroely, L., Bivour, M., Cimiotti, G., Bartsch, J., Glatthaar, M., Nekarda, J.-F.: Laser-transferred Niv-seed for the metallization of silicon heterojunction solar cells by Cu-plating. In: Proceedings of the 33rd European Photovoltaic Solar Energy Conference, pp. 402–405 (2017)

  21. Lee, S.H., Lee, D.W., Lee, S.H., Park, C.K., Lim, K.J., Shin, W.S.: Contact resistivity and adhesion of copper alloy seed layer for copper-plated silicon heterojunction solar cells. Jpn. J. Appl. Phys. 57(8S3), 08RB13 (2018)

    Article  Google Scholar 

  22. Lee, S.H., Lee, D.W., Kim, H.J., Lee, A.R., Lee, S.H., Lim, K.-J., Shin, W.-S.: Study of Cu-X alloy seed layer on ITO for copper-plated silicon heterojunction solar cells. Mater. Sci. Semicon. Proc. 87, 19–23 (2018)

    Article  Google Scholar 

  23. Lee, S.H., Lee, D.W., Lee, A.R., Kim, H.J., Lee, S.H.: Investigation of metal co-evaporated copper seed layers for copper-plated heterojunction solar cells. J. Korean Phys. Soc. 72(3), 469–475 (2018)

    Article  Google Scholar 

  24. Schroder, D.K., Meier, D.L.: Solar cell contact resistance—a review. IEEE Trans. Electron Dev. 31(5), 637–647 (1984)

    Article  Google Scholar 

  25. Varea, A., Pellicer, E., Pané, S., Nelson, B.J., Suriñach, S., Baró, M.D., Sort, J.: Mechanical properties and corrosion behaviour of nanostructured Cu-rich CuNi electrodeposited films. Int. J. Electrochem. Sci. 7, 1288–1302 (2012)

    Google Scholar 

  26. Green, T., Russell, A., Roy, S.: The development of a stable citrate electrolyte for the electrodeposition of copper–nickel alloys. J. Electrochem. Soc. 145(3), 875–881 (1998)

    Article  Google Scholar 

  27. Chassaing, E., Quang, K.V., Wiart, R.: Mechanism of copper–nickel alloy electrodeposition. J. Appl. Electrochem. 17(6), 1267–1280 (1987)

    Article  Google Scholar 

  28. Stout, L.E., Burch, O.G., Langsdorf, A.S.: Electrodeposition of copper–nickel alloys. Trans. Am. Electrochem. Soc. 57(1), 113–129 (1930)

    Article  Google Scholar 

  29. Schroder, D.K.: Semiconductor Material and Device Characterization. Wiley, New York (2006)

    Google Scholar 

  30. Holzwarth, U., Gibson, N.: The Scherrer equation versus the’Debye-Scherrer equation’. Nat. Nanotechnol. 6(9), 534–534 (2011)

    Article  Google Scholar 

  31. Denton, A.R., Ashcroft, N.W.: Vegard’s law. Phys. Rev. A 43(6), 3161 (1991)

    Article  Google Scholar 

  32. Ghosh, S., Grover, A., Dey, G., Totlani, M.: Nanocrystalline Ni–Cu alloy plating by pulse electrolysis. Surf. Coat. Technol. 126(1), 48–63 (2000)

    Article  Google Scholar 

  33. Baskaran, I., Narayanan, T.S., Stephen, A.: Pulsed electrodeposition of nanocrystalline Cu–Ni alloy films and evaluation of their characteristic properties. Mater. Lett. 60(16), 1990–1995 (2006)

    Article  Google Scholar 

  34. Sinton, R., Cuevas, A.: A quasi-steady-state open-circuit voltage method for solar cell characterization. In: Proceedings of the 16th European Photovoltaic Solar Energy Conference (2000)

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20173010012940) and by the Ministry of Trade, Industry, and Energy, Korea Evaluation Institute of Industrial Technology (KEIT) (No. 10043793).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.H., Lee, D.W., Lim, Kj. et al. Copper–Nickel Alloy Plating to Improve the Contact Resistivity of Metal Grid on Silicon Heterojunction Solar Cells. Electron. Mater. Lett. 15, 314–322 (2019). https://doi.org/10.1007/s13391-019-00134-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00134-x

Keywords

Navigation