Skip to main content
Log in

Effect of Temperature on Coalescence Behavior of Unsupported Gold Nanoparticles

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The coalescing behavior of gold nanoparticles was studied by employing molecular dynamics simulations based on a semi-empirical embedded-atom method. Investigations on the coalescing process of the faceted nanoparticles revealed that at relatively low-temperatures, plastic deformation by slip motion was the main mechanism of coalescence, while near the melting point, coalescence was preceded by local fluid motion. Different initial configuration and coalescing temperature have a substantial influence on the coalescing behavior, making different final structures such as twinned face-centered cubic or amorphous nanoparticles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arcidiacono, S., Bieri, N., Poulikakos, D., Grigoropoulos, C.: On the coalescence of gold nanoparticles. Int. J. Multiph. Flow 30, 979–994 (2004)

    Article  Google Scholar 

  2. Wang, J., Chen, S., Cui, K., Li, D., Chen, D.: Approach and coalescence of gold nanoparticles driven by surface thermodynamic fluctuations and atomic interaction forces. ACS Nano 10, 2893–2902 (2016)

    Article  Google Scholar 

  3. Ingham, B., Lim, T.H., Dotzler, C.J., Henning, A., Toney, M.F., Tilley, R.D.: How nanoparticles coalesce: an in situ study of Au nanoparticle aggregation and grain growth. Chem. Mater. 23, 3312–3317 (2011)

    Article  Google Scholar 

  4. de Heer, W.A.: The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 65, 611 (1993)

    Article  Google Scholar 

  5. Jensen, P.: Growth of nanostructures by cluster deposition: experiments and simple models. Rev. Mod. Phys. 71, 1695 (1999)

    Article  Google Scholar 

  6. Buffat, P.-A., Flueli, M., Spycher, R., Stadelmann, P., Borel, J.-P.: Crystallographic structure of small gold particles studied by high-resolution electron microscopy. Faraday Discuss. 92, 173–187 (1991)

    Article  Google Scholar 

  7. Reinhard, D., Hall, B.D., Ugarte, D., Monot, R.: Size-independent fcc-to-icosahedral structural transition in unsupported silver clusters: an electron diffraction study of clusters produced by inert-gas aggregation. Phys. Rev. B 55, 7868 (1997)

    Article  Google Scholar 

  8. Reinhard, D., Hall, B.D., Berthoud, P., Valkealahti, S., Monot, R.: Size-dependent icosahedral-to-fcc structure change confirmed in unsupported nanometer-sized copper clusters. Phys. Rev. Lett. 79, 1459 (1997)

    Article  Google Scholar 

  9. Reinhard, D., Hall, B.D., Berthoud, P., Valkealahti, S., Monot, R.: Unsupported nanometer-sized copper clusters studied by electron diffraction and molecular dynamics. Phys. Rev. B 58, 4917 (1998)

    Article  Google Scholar 

  10. Baletto, F., Mottet, C., Ferrando, R.: Reentrant morphology transition in the growth of free silver nanoclusters. Phys. Rev. Lett. 84, 5544 (2000)

    Article  Google Scholar 

  11. Baletto, F., Mottet, C., Ferrando, R.: Microscopic mechanisms of the growth of metastable silver icosahedra. Phys. Rev. B 63, 155408 (2001)

    Article  Google Scholar 

  12. Foiles, S.M., Baskes, M.I., Daw, M.S.: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983 (1986)

    Article  Google Scholar 

  13. Johnson, R.A.: Analytic nearest-neighbor model for fcc metals. Phys. Rev. B 37, 3924 (1988)

    Article  Google Scholar 

  14. Plimpton, S., Crozier, P., Thompson, A.: LAMMPS-large-scale atomic/molecular massively parallel simulator. Sandia Natl. Lab. 18, 43 (2007)

    Google Scholar 

  15. Stillinger, F.H.: A topographic view of supercooled liquids and glass formation. Science 267, 1935–1939 (1995)

    Article  Google Scholar 

  16. Sastry, S., Debenedetti, P.G., Stillinger, F.H.: Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393, 554 (1998)

    Article  Google Scholar 

  17. Steinhardt, P.J., Nelson, D.R., Ronchetti, M.: Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784 (1983)

    Article  Google Scholar 

  18. ten Wolde, P.R., Ruiz-Montero, M.J., Frenkel, D.: Numerical evidence for bcc ordering at the surface of a critical fcc nucleus. Phys. Rev. Lett. 75, 2714 (1995)

    Article  Google Scholar 

  19. Chushak, Y., Bartell, L.: Molecular dynamics simulations of the freezing of gold nanoparticles. Eur. Phys. J D At. Mol. Opt. Plasma Phys. 16, 43 (2001)

    Google Scholar 

  20. van de Waal, B.W.: No evidence for size-dependent icosahedral → fcc structural transition in rare-gas clusters. Phys. Rev. Lett. 76, 1083 (1996)

    Article  Google Scholar 

  21. Lewis, L.J., Jensen, P., Barrat, J.-L.: Melting, freezing, and coalescence of gold nanoclusters. Phys. Rev. B 56, 2248 (1997)

    Article  Google Scholar 

  22. Nam, H.-S., Hwang, N.-M., Yu, B.D., Yoon, J.-K.: Formation of an icosahedral structure during the freezing of gold nanoclusters: surface-induced mechanism. Phys. Rev. Lett. (2002). https://doi.org/10.1103/PhysRevLett.89.275502

    Google Scholar 

Download references

Acknowledgments

This work was supported by Basic Science Research Program (2017R1A2B4012871), Leading Foreign Research Institute Recruitment Program (2013K1A4A3055679), and the Priority Research Centers Program (2009-0093814) through the National Research Foundation of Korea (NRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Seok Nam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, K., Lee, J. & Nam, HS. Effect of Temperature on Coalescence Behavior of Unsupported Gold Nanoparticles. Electron. Mater. Lett. 15, 133–139 (2019). https://doi.org/10.1007/s13391-018-0090-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0090-6

Keywords

Navigation