Advertisement

Electronic Materials Letters

, Volume 14, Issue 5, pp 556–562 | Cite as

Low Thermal Conductivity of RE-Doped SrO(SrTiO3)1 Ruddlesden Popper Phase Bulk Materials Prepared by Molten Salt Method

  • Yulia Eka Putri
  • Suhana Mohd Said
  • Refinel Refinel
  • Michitaka Ohtaki
  • Syukri Syukri
Article
  • 94 Downloads

Abstract

The SrO(SrTiO3)1 (Sr2TiO4) Ruddlesden Popper (RP) phase is a natural superlattice comprising of alternately stacking perovskite-type SrTiO3 layers and rock salt SrO layers along the crystallographic c direction. This paper discusses the properties of the Sr2TiO4 and (La, Sm)-doped Sr2TiO4 RP phase synthesized via molten salt method, within the context of thermoelectric applications. A good thermoelectric material requires high electrical conductivity, high Seebeck coefficient and low thermal conductivity. All three conditions have the potential to be fulfilled by the Sr2TiO4 RP phase, in particular, the superlattice structure allows a higher degree of phonon scattering hence resulting in lowered thermal conductivity. In this work, the Sr2TiO4 RP phase is doped with Sm and La respectively, which allows injection of charge carriers, modification of its electronic structure for improvement of the Seebeck coefficient, and most significantly, reduction of thermal conductivity. The particles with submicron size allows excessive phonon scattering along the boundaries, thus reduces the thermal conductivity by fourfold. In particular, the Sm-doped sample exhibited even lower lattice thermal conductivity, which is believed to be due to the mismatch in the ionic radius of Sr and Sm. This finding is useful as a strategy to reduce thermal conductivity of Sr2TiO4 RP phase materials as thermoelectric candidates, by employing dopants of differing ionic radius.

Keywords

Superlattice Perovskite Ruddlesden Popper phase Molten salt Electrical conductivity 

Notes

Acknowledgements

The work was supported by Ministry of Research, Technology and Higher Education of the Republic Indonesia through Research Institute and Community Service (Riset Dasar Grant No. 19/UN.16.03.D/PP/FMIPA/2017) and Domestic Seminar Assistance Program of Andalas University.

References

  1. 1.
    Ruddlesden, S.N., Popper, P.: The compound Sr3Ti2O7 and its structure. Acta Crystallogr. 11, 54–55 (1958)CrossRefGoogle Scholar
  2. 2.
    Ruddlesden, S.N., Popper, P.: New compounds of the K2NIF4 type. Acta Crystallogr. 10, 538–539 (1957)CrossRefGoogle Scholar
  3. 3.
    Zhang, L., et al.: First principles studies on the thermoelectric properties of (SrO)m (SrTiO3)n superlattice. RSC Adv. 6, 102172–102182 (2016)CrossRefGoogle Scholar
  4. 4.
    Haeni, J.H., et al.: Epitaxial growth of the first five members of the Srn+1TinO3n+1 Ruddlesden–Popper homologous series. Appl. Phys. Lett. 78, 3292–3294 (2001)CrossRefGoogle Scholar
  5. 5.
    Tsai, H., et al.: High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016)CrossRefGoogle Scholar
  6. 6.
    Arredondo, M., et al.: Chemistry of Ruddlesden–Popper planar faults at a ferroelectric-ferromagnet perovskite interface. J. Appl. Phys. 109, 084101 (2011)CrossRefGoogle Scholar
  7. 7.
    Koh, T.M., Febriansyah, B., Mathews, N.: Ruddlesden–Popper perovskite solar cells. Chem 2, 326–327 (2017)CrossRefGoogle Scholar
  8. 8.
    Birol, T., Benedek, N.A., Fennie, C.J.: Interface control of emergent ferroic order in Ruddlesden–Popper Srn+1TinO3n+1. Phys. Rev. Lett. 107, 257602 (2011)CrossRefGoogle Scholar
  9. 9.
    Chen, Y., Zhao, Y., Liang, Z.: Solution processed organic thermoelectrics: towards flexible thermoelectric modules. Energy Environ. Sci. 8, 401–422 (2015)CrossRefGoogle Scholar
  10. 10.
    Lee, K.H., Ishizaki, A., Kim, S.W., Ohta, H., Koumoto, K.: Preparation and thermoelectric properties of heavily Nb-doped SrO (SrTiO3)1 epitaxial films. J. Appl. Phys. 102, 033702 (2007)CrossRefGoogle Scholar
  11. 11.
    Reshak, A.H.: Thermoelectric properties of Srn+1TinO3n+1 (n = 1, 2, 3, ∞) Ruddlesden–Popper homologous series. Renew. Energy 76, 36–44 (2015)CrossRefGoogle Scholar
  12. 12.
    Lee, K.H., Kim, S.W., Ohta, H., Koumoto, K.: Ruddlesden–Popper phases as thermoelectric oxides: Nb-doped SrO(SrTiO3)n (n = 1,2). J. Appl. Phys. 100, 063717 (2006)CrossRefGoogle Scholar
  13. 13.
    Hungria, T., MacLaren, I., Fuess, H., Galy, J., Castro, A.: HREM studies of intergrowths in Sr2[Srn−1TinO3n+1] Ruddlesden–Popper phases synthesized by mechanochemical activation. Mater. Lett. 62, 3095–3098 (2008)CrossRefGoogle Scholar
  14. 14.
    Hungría, T., Lisoni, J.G., Castro, A.: Sr3Ti2O7 Ruddlesden–Popper phase synthesis by milling routes. Chem. Mater. 14, 1747–1754 (2002)CrossRefGoogle Scholar
  15. 15.
    Gutmann, E., et al.: Oriented growth of Srn+1TinO3n+1 Ruddlesden–Popper phases in chemical solution deposited thin films. J. Solid State Chem. 179, 1864–1869 (2006)CrossRefGoogle Scholar
  16. 16.
    Liu, Y.F., Lu, Y.N., Xu, M., Zhoun, L.F.: Formation mechanisms of platelet Sr3Ti2O7 crystals synthesized by the molten salt synthesis method. J. Am. Ceram. Soc. 90, 1774–1779 (2007)CrossRefGoogle Scholar
  17. 17.
    Watari, K., Brahmaroutu, B., Messing, G.L., Trolier-Mckinstry, S., Cheng, S.-C.: Epitaxial growth of anisotropically shaped, single-crystal particles of cubic SrTiO3. J. Mater. Res. 15, 846–849 (2000)CrossRefGoogle Scholar
  18. 18.
    Liu, Y.F., Lu, Y.N., Xu, M., Zhou, L.F., Shi, S.Z.: Topochemical reaction of SrTiO3 platelet crystals based on Sr3Ti2O7 platelet precursor in molten salt synthesis process. Mater. Chem. Phys. 114, 37–42 (2009)CrossRefGoogle Scholar
  19. 19.
    Arendt, R.H., Rosolowski, J.H., Szymaszek, J.W.: Lead zirconate titanate ceramics from molten salt solvent synthesized powders. Mater. Res. Bull. 14, 703–709 (1979)CrossRefGoogle Scholar
  20. 20.
    Oku, M., Wagatsuma, K., Kohiki, S.: Ti 2p and Ti 3p X-ray photoelectron spectra for TiO2, SrTiO3 and BaTiO3. Phys. Chem. Chem. Phys. 1, 5327–5331 (1999)CrossRefGoogle Scholar
  21. 21.
    Myhre, K., et al.: Samarium electrodeposited acetate and oxide thin films on stainless steel substrate characterized by XPS Samarium electrodeposited acetate and oxide thin films on stainless steel substrate characterized by XPS. Surf. Sci. Spectra 23, 70 (2016)CrossRefGoogle Scholar
  22. 22.
    Long, C., Fan, H.: Effect of lanthanum substitution at A site on structure and enhanced properties of new Aurivillius oxide K0.25Na0.25La0.5Bi2Nb2O9. Dalton Trans. 41, 11046 (2012)CrossRefGoogle Scholar
  23. 23.
    Sugimoto, W.: Synthesis and structures of carrier doped titanates with the Ruddlesden–Popper structure (Sr0.95La0.05)n+1TinO3n+1 (n = 1, 2). Solid State Ion. 108, 315–319 (1998)CrossRefGoogle Scholar
  24. 24.
    Warren, W.L., Vanheusden, K., Dimos, D., Pike, G.E., Tuttle, B.A.: Oxygen vacancy motion in perovskite oxides. J. Am. Ceram. Soc. 79, 536–538 (1996)CrossRefGoogle Scholar
  25. 25.
    Trabelsi, H., et al.: Effect of oxygen vacancies on SrTiO3 electrical properties. J. Alloys Compd. 723, 894–903 (2017)CrossRefGoogle Scholar
  26. 26.
    Wang, Y., Lee, K.H., Ohta, H., Koumoto, K.: Thermoelectric properties of electron doped SrO (SrTiO3)n (n = 1,2) ceramics. J. Appl. Phys. 105, 103 (2009)Google Scholar
  27. 27.
    Mamand, S.M., Omar, M.S., Muhammad, A.J.: Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires. Mater. Res. Bull. 47, 1264–1272 (2012)CrossRefGoogle Scholar
  28. 28.
    Abeles, B.: Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys. Rev. 131, 1906–1911 (1963)CrossRefGoogle Scholar
  29. 29.
    Muta, H., Kurosaki, K., Yamanaka, S.: Thermoelectric properties of rare earth doped SrTiO3. J. Alloys Compd. 350, 292–295 (2003)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Yulia Eka Putri
    • 1
  • Suhana Mohd Said
    • 2
  • Refinel Refinel
    • 1
  • Michitaka Ohtaki
    • 3
  • Syukri Syukri
    • 1
  1. 1.Department of Chemistry, Faculty of Mathematics and Natural SciencesAndalas UniversityPadangIndonesia
  2. 2.Department of Electrical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering SciencesKyushu UniversityFukuokaJapan

Personalised recommendations