Skip to main content
Log in

Significantly Elevated Dielectric and Energy Storage Traits in Boron Nitride Filled Polymer Nano-composites with Topological Structure

Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Interface induced polarization has a prominent influence on dielectric properties of 0–3 type polymer based composites containing Si-based semi-conductors. The disadvantages of composites were higher dielectric loss, lower breakdown strength and energy storage density, although higher permittivity was achieved. In this work, dielectric, conductive, breakdown and energy storage properties of four nano-composites have been researched. Based on the cooperation of fluoropolymer/alpha-SiC layer and fluoropolymer/hexagonal-BN layer, it was confirmed constructing the heterogeneous layer-by-layer composite structure rather than homogeneous mono-layer structure could significantly reduce dielectric loss, promote breakdown strength and increase energy storage density. The former worked for a larger dielectric response and the latter layer acted as a robust barrier of charge carrier transfer. The best nano-composite could possess a permittivity of 43@100 Hz (~ 3.3 times of polymer), loss of 0.07@100 Hz (~ 37% of polymer), discharged energy density of 2.23 J/cm3@249 kV/cm (~ 10 times of polymer) and discharged energy efficiency of 54%@249 kV/cm (~ 5 times of polymer). This work might enlighten a facile route to achieve the promising high energy storage composite dielectrics by constructing the layer-by-layer topological structure.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu, H.Y., Shen, Y., Song, Y.: Carbon nanotube array/polymer core/shell structured composites with high dielectric permittivity, low dielectric loss, and large energy density. Adv. Mater. 23, 5104–5108 (2011)

    Article  Google Scholar 

  2. Shao, S.F., Zhang, J.L., Zheng, P.: High permittivity and low dielectric loss in ceramics with the nominal compositions of CaCu3−xLa2x/3 Ti4O12. Appl. Phys. Lett. 91, 042905 (2007)

    Article  Google Scholar 

  3. Subodh, G., Deepu, V., Mohanan, P.: Dielectric response of high permittivity polymer ceramic composite with low loss tangent. Appl. Phys. Lett. 95, 062903 (2009)

    Article  Google Scholar 

  4. Bhadra, D., Biswas, A., Sarkar, S.: Low loss high dielectric permittivity of polyvinylidene fluoride and KxTiyNi1−x−yO (x = 0.05), y = 0.02) composites. J. Appl. Phys. 107, 24115 (2010)

    Article  Google Scholar 

  5. Dimiev, A., Lu, W., Zeller, K.: Low-loss, high-permittivity composites made from graphene nanoribbons. ACS Appl. Mater. Interfaces 3, 4657–4661 (2011)

    Article  Google Scholar 

  6. Wang, D.R., Zhou, T., Zha, J.W.: Functionalized graphene–BaTiO3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold. J. Mater. Chem. A 1, 6162–6168 (2013)

    Article  Google Scholar 

  7. Dang, Z.M., Tian, C.Y., Zha, J.W.: Potential bioelectroactive bone regeneration polymer nanocomposites with high dielectric permittivity. Adv. Eng. Mater. 11, B144–B147 (2009)

    Article  Google Scholar 

  8. Lu, J.X., Wong, C.P.: Recent advances in high-k nanocomposite materials for embedded capacitor applications. IEEE Trans. Dielectr. Electr. Insul. 15, 1322–1328 (2008)

    Article  Google Scholar 

  9. Lin, C.Y., Kuo, D.H., Sie, F.R.: Preparation and characterization of organosoluble polyimide/BaTiO3composite films with mechanical- and chemical-treated ceramic fillers. Polym. J. 44, 1131–1137 (2012)

    Article  Google Scholar 

  10. Wongwilawan, S., Ishida, H., Manuspiya, H.: Dielectric properties at microwave frequency in barium strontium titanate/poly (benzoxazine/urethane) composite films. Ferroelectrics 452, 84–90 (2013)

    Article  Google Scholar 

  11. Panda, M., Srinivas, V., Thakur, A.K.: Role of polymer matrix in large enhancement of dielectric constant in polymer-metal composites. Appl. Phys. Lett. 99, 042905 (2011)

    Article  Google Scholar 

  12. Panda, M., Srinivas, V., Thakur, A.K.: Percolation behavior of polymer/metal composites on modification of filler. Mod. Phys. Lett. B 28, 1450055 (2014)

    Article  Google Scholar 

  13. Pothukuchi, S., Li, Y., Wong, C.P.: Development of a novel polymer–metal nanocomposite obtained through the route of in situ reduction for integral capacitor application. J. Appl. Polym. Sci. 93, 1531–1538 (2004)

    Article  Google Scholar 

  14. Qi, L., Lee, B.I., Chen, S.H.: High-dielectric-constant silver–epoxy composites as embedded dielectrics. Adv. Mater. 17, 1777–1781 (2005)

    Article  Google Scholar 

  15. Dang, Z.M., Shen, Y., Nan, C.W.: Dielectric behavior of three-phase percolative Ni–BaTiO3/polyvinylidene fluoride composites. Appl. Phys. Lett. 81, 4814 (2002)

    Article  Google Scholar 

  16. Chou, Y.H., Chiu, Y.C., Chen, W.C.: High-k polymer–graphene oxide dielectrics for low-voltage flexible nonvolatile transistor memory devices. Chem. Commun. 50, 3217–3219 (2014)

    Article  Google Scholar 

  17. Kim, J.Y., Lee, J., Lee, W.H.: Flexible and transparent dielectric film with a high dielectric constant using chemical vapor deposition-grown graphene interlayer. ACS Nano 8, 269–274 (2014)

    Article  Google Scholar 

  18. Zhang, X.J., Wang, G.S., Wei, Y.Z., Guo, L., Cao, M.S.: Polymer-composite with high dielectric constant and enhanced absorption properties based on graphene–CuS nanocomposites and polyvinylidene fluoride. J. Mater. Chem. A 1, 12115–12122 (2013)

    Article  Google Scholar 

  19. Brosseau, C., Boulic, F., Queffelec, P.: Dielectric and microstructure properties of polymer carbon black composites. J. Appl. Phys. 81, 882 (1997)

    Article  Google Scholar 

  20. Wen, F., Xu, Z., Tan, S.B., Appl, A.C.S.: Chemical bonding-induced low dielectric loss and low conductivity in high-K poly (vinylidenefluoride-trifluorethylene)/graphene nanosheets nanocomposites. Mater. Interfaces 5, 9411–9420 (2013)

    Article  Google Scholar 

  21. Wang, C.C., Song, J.F., Bao, H.M.: Enhancement of electrical properties of ferroelectric polymers by polyaniline nanofibers with controllable conductivities. Adv. Funct. Mater. 18, 1299–1306 (2008)

    Article  Google Scholar 

  22. Cristovan, F.H., Pereira, E.C.: Polymeric varistor based on PANI/ABS composite. Synth. Met. 161, 2041–2044 (2011)

    Article  Google Scholar 

  23. Bhadra, J., Sarkar, D.: Field effect transistor fabricated from polyaniline-polyvinyl alcohol nanocomposite. Indian J. Phys. 84, 693–697 (2010)

    Article  Google Scholar 

  24. Zhang, Q.M., Li, H.F., Poh, M.: An all-organic composite actuator material with a high dielectric constant. Nature 419, 284–287 (2002)

    Article  Google Scholar 

  25. Wang, J.W., Shen, Q.D., Yang, C.Z.: High dielectric constant composite of P (VDF−TrFE) with grafted copper phthalocyanine oligomer. Macromolecules 37, 2294–2298 (2004)

    Article  Google Scholar 

  26. Mallet, P., Guerin, C.A., Sentenac, A.: Maxwell-Garnett mixing rule in the presence of multiple scattering: derivation and accuracy. Phys. Rev. B 72, 014205 (2005)

    Article  Google Scholar 

  27. Skryabin, I.L., Radchik, A.V., Moses, P.: The consistent application of Maxwell–Garnett effective medium theory to anisotropic composites. Appl. Phys. Lett. 70, 2221 (1997)

    Article  Google Scholar 

  28. Goncharenko, A.V.: Generalizations of the Bruggeman equation and a concept of shape-distributed particle composites. Phys. Rev. E 68, 041108 (2003)

    Article  Google Scholar 

  29. Puranik, S.M., Kumbharkhane, A.C., Mehrotra, S.C.: The static permittivity of binary mixtures using an improved bruggeman model. J. Mol. Liq. 59, 173–177 (1994)

    Article  Google Scholar 

  30. Rahaman, M., Chaki, T.K., Khastgir, D.: Consideration of interface polarization in the modeling of dielectric property for ethylene vinyl acetate (EVA)/polyaniline conductive composites prepared through in-situ polymerization of aniline in EVA matrix. Eur. Polym. J. 48, 1241–1248 (2012)

    Article  Google Scholar 

  31. Dang, Z.M., Yuan, J.K., Zha, J.W.: Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog. Mater Sci. 57, 660–723 (2012)

    Article  Google Scholar 

  32. Deepa, K.S., Gopika, M.S., James, J.: Influence of matrix conductivity and Coulomb blockade effect on the percolation threshold of insulator–conductor composites. Compos. Sci. Technol. 78, 18–23 (2013)

    Article  Google Scholar 

  33. Lu, J.X., Moon, K.S., Xu, J.W.: Synthesis and dielectric properties of novel high-Kpolymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications. J. Mater. Chem. 16, 1543–1548 (2006)

    Article  Google Scholar 

  34. Yang, W.H., Yu, S.H., Sun, R.: Nano- and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites. Acta Mater. 59, 5593–5602 (2011)

    Article  Google Scholar 

  35. Li, Q., Han, K., Gadinski, M.R.: High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv. Mater. 26, 6244–6249 (2014)

    Article  Google Scholar 

  36. Yu, K., Niu, Y., Zhou, Y.: Nanocomposites of surface-modified BaTiO3 nanoparticles filled ferroelectric polymer with enhanced energy density. J. Am. Ceram. Soc. 96, 2519–2524 (2013)

    Article  Google Scholar 

  37. Liu, S., Xue, S., Zhang, W.: Enhanced dielectric and energy storage density induced by surface-modified BaTiO3 nanofibers in poly(vinylidene fluoride) nanocomposites. Ceram. Int. 40, 15633–15640 (2014)

    Article  Google Scholar 

  38. Liu, H., Luo, S., Yu, S.: Flexible BaTiO3nf-Ag/PVDF nanocomposite films with high dielectric constant and energy density. IEEE Trans. Dielectr. Electr. Insul. 24, 757–763 (2017)

    Article  Google Scholar 

  39. Shen, Y., Shen, D., Zhang, X.: High energy density of polymer nanocomposites at a low electric field induced by modulation of their topological-structure. J. Mater. Chem. A 4, 8359–8365 (2016)

    Article  Google Scholar 

  40. Liu, S., Zhai, J., Wang, J.: Enhanced energy storage density in poly (vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers. ACS Appl. Mater. Interfaces 6, 1533–1540 (2014)

    Article  Google Scholar 

  41. Hu, P., Shen, Y., Guan, Y.: Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density. Adv. Funct. Mater. 24, 3172–3178 (2014)

    Article  Google Scholar 

  42. Song, Y., Shen, Y., Hu, P.: Significant enhancement in energy density of polymer composites induced by dopamine-modified Ba0.6Sr0.4TiO3 nanofibers. Appl. Phys. Lett. 101, 152904 (2012)

    Article  Google Scholar 

  43. Zhang, Z., Gu, Y., Bi, J.: Tunable BT@SiO2 core@shell filler reinforced polymer composite with high breakdown strength and release energy density. Compos. A Appl. S 85, 172–180 (2016)

    Article  Google Scholar 

  44. Chen, Q., Shen, Y., Zhang, S.: Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Res. 45, 433–458 (2015)

    Article  Google Scholar 

  45. Feng, Y.F., Miao, B., Gong, H.H.: High dielectric and mechanical properties achieved in cross-linked PVDF/α-SiC nanocomposites with elevated compatibility and induced polarization at the interface. ACS Appl. Mater. Interfaces 8, 19054–19065 (2016)

    Article  Google Scholar 

  46. Patra, S.K., Prusty, G., Swain, S.K.: Ultrasound assisted synthesis of PMMA/clay nanocomposites: study of oxygen permeation and flame retardant properties. B Mater Sci. 35, 27–32 (2012)

    Article  Google Scholar 

  47. Cho, H.B., Nakayama, T., Jeong, D.Y.: Polyvilylidenefluoride-based nanocomposite films induced-by exfoliated boron nitride nanosheets with controlled orientation. Compos. Res. 28, 270–276 (2015)

    Article  Google Scholar 

  48. Sharma, S., Kumar, P.M., Moholkar, V.S.: Enhancement of thermal and mechanical properties of poly (MMA-co-BA)/Cloisite 30B nanocomposites by ultrasound-assisted in-situ emulsion polymerization. Ultrason. Sonochem. 36, 212–225 (2017)

    Article  Google Scholar 

  49. Shikinaka, K., Aizawa, K., Fujii, N.: Flexible, transparent nanocomposite film with a large clay component and ordered structure obtained by a simple solution-casting method. Langmuir 26, 12493–12495 (2010)

    Article  Google Scholar 

  50. Bich, E., Hensen, U., Michalik, M.: 1H NMR spectroscopic and thermodynamic studies of hydrogen bonding in liquid n-butanol + cyclohexane, tert-butanol + cyclohexane, and n-butanol + pyridine mixtures. Phys. Chem. Chem. Phys. 4, 5827–5832 (2002)

    Article  Google Scholar 

  51. Kennedy, G.P., Lim, K.Y., Kim, Y.W.: Effect of SiC particle size on flexural strength of porous self-bonded SiC ceramics. Metals Mater. Int. 17, 599–605 (2011)

    Article  Google Scholar 

  52. Montalba, C., Ramam, K., Eskin, D.G.: Fabrication of a novel hybrid AlMg5/SiC/PLZT metal matrix composite produced by hot extrusion. Mater. Des. 69, 213–218 (2015)

    Article  Google Scholar 

  53. Feng, Y.F., Gong, H.H., Xie, Y.C.: Strong induced polarity between Poly (vinylidene fluoride-co-chlorotrifluoroethylene) and α-SiC and its influence on dielectric permittivity and loss of their composites. J. Appl. Phys. 117, 094104 (2015)

    Article  Google Scholar 

  54. Li, Q., Chen, L., Gadinski, M.R.: Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015)

    Article  Google Scholar 

  55. Sun, Z.X., Ma, C.R., Liu, M.: Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering. Adv. Mater. 29, 1604427 (2017)

    Article  Google Scholar 

  56. Liu, F., Li, Q., Cui, J.: High-energy-density dielectric polymer nanocomposites with trilayered architecture. Adv. Funct. Mater. 27, 1606292 (2017)

    Article  Google Scholar 

  57. Qian, X.F., Wang, Y.Y., Li, W.B.: Modelling of stacked 2D materials and devices. 2D Mater. 2, 032003 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Talent Introduction Scientific Research Initiation Projects of Yangtze Normal University (Grant Nos. 2017KYQD33 and 2017KYQD34).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Peng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Zhang, J., Hu, J. et al. Significantly Elevated Dielectric and Energy Storage Traits in Boron Nitride Filled Polymer Nano-composites with Topological Structure. Electron. Mater. Lett. 14, 187–197 (2018). https://doi.org/10.1007/s13391-018-0032-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0032-3

Keywords

Navigation