Electronic Materials Letters

, Volume 14, Issue 2, pp 147–153 | Cite as

High Performance Proton-Conducting Solid Oxide Fuel Cells with a Layered Perovskite GdBaCuCoO5+x Cathode

Article
  • 91 Downloads

Abstract

Proton-conducting solid oxide fuel cell (H-SOFC) based on layered perovskite type GdBaCuCoO5+x (GBCC) cathode was fabricated with in situ drop-coating BaZr0.1Ce0.7Y0.2O3−δ (BZCY) electrolyte membrane. The influences of Cu doping into Co sites of GdBaCo2O5+x on the electrical conductivity and conduction mechanism, thermal expansion property and electrochemical performance of cathode materials and corresponding single cell were investigated. Results show that the electrical conductivity decreased and the conduction mechanism would gradually transform to the semiconductor-like behavior. A high maximum power density of 480 mW cm−2 was obtained for the anode supported NiO–BZCY/NiO–BZCY/BZCY/GBCC single cells with wet H2 fuel at 700 °C. The corresponding polarization resistance was as low as 0.17 Ω cm2. The excellent electrochemical performance of as-prepared single cell indicates that GBCC is a good candidate of cathode materials for H-SOFCs.

Graphical Abstract

Keywords

Proton-conducting solid oxide fuel cells Cathode materials Electrical conductivity behavior Thermal expansion Electrochemical performance 

Notes

Acknowledgements

The authors would like to thank the financial support from the National Natural Science Foundation of China (Nos. 51462012 and 51462011) and Jiangxi Provincial Department of Education, China (KJLD14076).

References

  1. 1.
    Sengodan, S., Choi, S., Jun, A., Shin, T.H., Ju, Y.-W., Jeong, H.Y., Shin, J., Irvine, J.T.S., Kim, G.: Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 14, 205 (2015)CrossRefGoogle Scholar
  2. 2.
    Wang, W., Su, C., Wu, Y., Ran, R., Shao, Z.: Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chem. Rev. 113, 8104 (2013)CrossRefGoogle Scholar
  3. 3.
    Tao, S.W., Irvine, J.T.S.: A redox-stable efficient anode for solid-oxide fuel cells. Nat. Mater. 2, 320 (2003)CrossRefGoogle Scholar
  4. 4.
    Zhou, Y., Guan, X., Zhou, H., Ramadoss, K., Adam, S., Liu, H., Lee, S., Shi, J., Tsuchiya, M., Fong, D.D., Ramanathan, S.: Strongly correlated perovskite fuel cells. Nature 534, 231 (2016)CrossRefGoogle Scholar
  5. 5.
    Huang, Y.H., Dass, R.I., Xing, Z.L., Goodenough, J.B.: Double perovskites as anode materials for solid-oxide fuel cells. Science 312, 254 (2006)CrossRefGoogle Scholar
  6. 6.
    Yang, C., Yang, Z., Jin, C., Xiao, G., Chen, F., Han, M.: Sulfur-tolerant redox- reversible anode material for direct hydrocarbon solid oxide fuel cells. Adv. Mater. 24, 1439 (2012)CrossRefGoogle Scholar
  7. 7.
    Dusastre, V., Kilner, J.A.: Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State Ionics 126, 163 (1999)CrossRefGoogle Scholar
  8. 8.
    Murray, E.P., Tsai, T., Barnett, S.A.: Characterization of GdBaCo2O5+δ cathode for IT-SOFCs. Solid State Ionics 110, 235 (1998)CrossRefGoogle Scholar
  9. 9.
    Li, M., Zhao, M., Li, F., Zhou, W., Peterson, V.K., Xu, X., Shao, Z., Gentle, I., Zhu, Z.: A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C. Nat. Commun. 8, 13990 (2017)CrossRefGoogle Scholar
  10. 10.
    Xia, C., Rauch, W., Chen, F., Liu, M.: Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics 149, 11 (2002)CrossRefGoogle Scholar
  11. 11.
    Shao, Z.P., Haile, S.M.: A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170 (2004)CrossRefGoogle Scholar
  12. 12.
    Zhao, L., He, B.B., Lin, B., Ding, H.P., Wang, S.L., Ling, Y.H., Peng, R.R., Meng, G.Y., Liu, X.Q.: BaZr0.1Ce0.7Y0.1Yb0.1O3−δ electrolyte-based solid oxide fuel cells with cobalt-free PrBaFe2O5+δ layered perovskite cathode. J. Power Sources 194, 835 (2009)CrossRefGoogle Scholar
  13. 13.
    Adler, S.B.: Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791 (2004)CrossRefGoogle Scholar
  14. 14.
    Yoo, S., Jun, A., Ju, Y., Odkhuu, D., Hyodo, J., Jeong, H.Y., Park, N., Shin, J., Ishihara, T., Kim, G.: Development of double-perovskite compounds as cathode materials for low-temperature solid oxide fuel cells. Angew. Chem. Int. Ed. 53, 13064 (2014)CrossRefGoogle Scholar
  15. 15.
    Lee, J.G., Park, J.H., Shul, Y.G.: Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm−2 at 550 °C. Nat. Commun. 5, 4050 (2014)Google Scholar
  16. 16.
    Xia, C., Liu, M.: Novel cathodes for low-temperature solid oxide fuel cells. Adv. Mater. 14, 521 (2002)CrossRefGoogle Scholar
  17. 17.
    Murray, E.P., Barnett, S.A.: (La, Sr) MnO3-(Ce, Gd)O2−x composite cathodes for solid oxide fuel cells. Solid State Ionics 143, 265 (2001)CrossRefGoogle Scholar
  18. 18.
    Zhou, W., Ran, R., Shao, Z.P., Jin, W.Q., Xu, N.P.: Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1−xCo0.8Fe0.2O3−δ (x > 0) perovskite as a solid-oxide fuel cell cathode. J. Power Sources 182, 24 (2008)CrossRefGoogle Scholar
  19. 19.
    Tu, H.Y., Takeda, Y., Imanishi, N., Yamamoto, O.: Ln0.4Sr0.6Co0.8Fe0.2O3−δ (Ln = La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells. Solid State Ionics 117, 277 (1999)CrossRefGoogle Scholar
  20. 20.
    Hwang, H.J., Moon, J.W., Lee, S., Lee, E.A.: Electrochemical performance of LSCF-based composite cathodes for intermediate temperature SOFCs. J. Power Sources 145, 243 (2005)CrossRefGoogle Scholar
  21. 21.
    Qiu, L., Ichikawa, T., Hirano, A., Imanishi, N., Takeda, Y.: Ln1−xSrxCo1−yFeyO3−δ (Ln = Pr, Nd, Gd; x = 0.2, 0.3) for the electrodes of solid oxide fuel cells. Solid State Ionics 158, 55 (2003)CrossRefGoogle Scholar
  22. 22.
    Yang, Y., Chen, Y., Tian, D., Lu, X., Ding, Y., Yu, W., Lin, B.: A new A-site excessive strategy to improve performance of layered perovskite cathode for intermediate-temperature solid oxide fuel cells. Electrochim. Acta 231, 686 (2017)CrossRefGoogle Scholar
  23. 23.
    Boehm, E., Bassat, J.M., Dordor, P., Mauvy, F., Grenier, J.C., Stevens, P.: Oxygen diffusion and transport properties in non-stoichiometric Ln2−xNiO4+δ oxides. Solid State Ionics 176, 2717 (2005)CrossRefGoogle Scholar
  24. 24.
    Gao, Y., Chen, D.J., Chen, C., Shao, Z.P., Ciucci, F.: Oriented PrBaCo2O5+δ thin films for solid oxide fuel cells. J. Power Sources 278, 623 (2015)CrossRefGoogle Scholar
  25. 25.
    Tarancon, A., Skinner, S.J., Chater, R.J., Hernandez-Ramirez, F., Kilner, J.A.: Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 17, 3175 (2007)CrossRefGoogle Scholar
  26. 26.
    Kim, G., Wang, S., Jacobson, A.J., Reimus, L., Brodersen, P., Mims, C.A.: Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. J. Mater. Chem. 17, 2500 (2007)CrossRefGoogle Scholar
  27. 27.
    Presti, L.L., Allieta, M., Scavini, M., Ghigna, P., Loconte, L., Scagnoli, V., Brunelli, M.: Crystal structure and structural phase transitions in the GdBaCo2O5.0 cobaltite. Phys. Rev. B 84, 104107 (2011)CrossRefGoogle Scholar
  28. 28.
    Tarancón, A., Burriel, M., Santiso, J., Skinner, S.J., Kilner, J.A.: Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 20, 3799 (2010)CrossRefGoogle Scholar
  29. 29.
    Wei, B., Lu, Z., Huang, X.Q., Liu, M.L., Li, N., Su, W.H.: Synthesis, electrical and electrochemical properties of Ba0.5Sr0.5Zn0.2Fe0.8O3−δ perovskite oxide for IT-SOFC cathode. J. Power Sources 176, 1 (2008)CrossRefGoogle Scholar
  30. 30.
    Ling, Y.H., Zhao, L., Lin, B., Dong, Y.C., Zhang, X.Z., Meng, G.Y., Liu, X.Q.: Layered perovskite LaBaCuMO5+x (M = Fe, Co) cathodes for intermediate-temperature protonic ceramic membrane fuel cells. J. Alloys Compd. 493, 252 (2010)CrossRefGoogle Scholar
  31. 31.
    Ling, Y.H., Zhao, L., Liu, X.Q., Lin, B.: Tailoring electrochemical property of layered perovskite cathode by Cu-doping for proton-conducting IT-SOFCs. Fuel Cells 15, 384 (2015)CrossRefGoogle Scholar
  32. 32.
    Zhou, Q.J., Zhang, Y.C., Shen, Y., He, T.M.: Layered perovskite GdBaCuCoO5+x cathode material for intermediate-temperature solid oxide fuel cells. J. Electrochem. Soc. 157, B628 (2010)CrossRefGoogle Scholar
  33. 33.
    Bi, L., Zhang, S., Lin, B., Fang, S., Xia, C., Liu, W.: Screen-printed BaCe0.8Sm0.2O3−δ thin membrane solid oxide fuel cells with surface modification by spray coating. J. Alloys Compd. 473, 48 (2009)CrossRefGoogle Scholar
  34. 34.
    Ling, Y.H., Chen, H., Niu, J.N., Wang, F., Zhao, L., Ou, X.M., Nakamura, T., Amezawa, K.: Bismuth and indium co-doping strategy for developing stable and efficient barium zirconate-based proton conductors for high-performance H-SOFCs. J. Eur. Ceram. Soc. 36, 3423 (2016)CrossRefGoogle Scholar
  35. 35.
    Li, N., Lu, Z., Wei, B., Huang, X.Q., Chen, K.F., Zhang, Y.H., Su, W.H.: Characterization of GdBaCo2O5+δ cathode for IT-SOFCs. J. Alloys Compd. 454, 274 (2008)CrossRefGoogle Scholar
  36. 36.
    Kim, Y.N., Manthiram, A.: Layered LnBaCo2−xCuxO5+δ (0 ≤ x ≤ 1.0) perovskite cathodes for intermediate-temperature solid oxide fuel cells. J. Electrochem. Soc. 158, B276 (2011)CrossRefGoogle Scholar
  37. 37.
    Zhu, Z.W., Tao, Z.T., Bi, L., Liu, W.: Investigation of SmBaCuCoO5+δ double-perovskite as cathode for proton-conducting solid oxide fuel cells. Mater. Res. Bull. 45, 1771 (2010)CrossRefGoogle Scholar
  38. 38.
    Ling, Y.H., Zhang, X.Z., Wang, S.L., Zhao, L., Lin, B., Liu, X.Q.: A cobalt-free SrFe0.9Sb0.1O3−δ cathode material for proton-conducting solid oxide fuel cells with stable BaZr0.1Ce0.7Y0.1Yb0.1O3−δ electrolyte. J. Power Sources 195, 7042 (2010)CrossRefGoogle Scholar
  39. 39.
    Ping, H.P., Xue, X.J.: BaZr0.1Ce0.7Y0.1Yb0.1O3−δ electrolyte-based solid oxide fuel cells with cobalt-free PrBaFe2O5+δ layered perovskite cathode. J. Power Sources 195, 7038 (2010)CrossRefGoogle Scholar
  40. 40.
    Fabbri, E., Bi, L., Tanaka, H., Pergolesi, D., Traversa, E.: Chemically stable Pr and Y Co-doped barium zirconate electrolytes with high proton conductivity for intermediate-temperature solid oxide fuel cells. Adv. Funct. Mater. 21, 158 (2011)CrossRefGoogle Scholar
  41. 41.
    Zhao, L., He, B.B., Gu, J.Q., Liu, F., Chu, X.F., Xia, C.R.: Reaction model for cathodes cooperated with oxygen-ion conductors for solid oxide fuel cells using proton-conducting electrolytes. Int. J. Hydrogen Energy 37, 548 (2012)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.School of Materials Science and Engineering and Key Laboratory of Inorganic MembranesJingdezhen Ceramic InstituteJingdezhenChina
  2. 2.School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouChina

Personalised recommendations