Advertisement

Electronic Materials Letters

, Volume 15, Issue 2, pp 227–237 | Cite as

Adhesive Mechanism of Al2O3/Cu Composite Film via Aerosol Deposition Process for Application of Film Resistor

  • Myung-Yeon Cho
  • Dong-Won Lee
  • Pil-Ju Ko
  • Sang-Mo Koo
  • Jaesik Kim
  • Youn-Kyu ChoiEmail author
  • Jong-Min OhEmail author
Original Article – Nanomaterials
  • 189 Downloads

Abstract

Al2O3/Cu composite films, useful for film resistors, were successfully fabricated at room temperature via aerosol deposition (AD). Microstructures of the Al2O3/Cu composite films were analyzed to understand the correlations between the surface morphologies and Al2O3/Cu ratio. A scratch test was carried out by gradually increasing the load applied to the Al2O3/Cu composite films. We also evaluated the adhesion ability by measuring the tensile strength between Al2O3/Cu composite films and Al2O3 substrate. The results confirmed that the adhesive properties of Al2O3/Cu composite films were strongly influenced by two adhesive mechanisms: mechanical interlocking and anchoring bonds between the films and Al2O3 substrate. When a powder mixture containing 50 wt% of Al2O3 and Cu was deposited on the substrate, high mechanical properties and suitable resistivity were simultaneously achieved at approximately 8.02 MPa and 85.2 mΩ cm, respectively due to effective mechanical interlocking and anchoring bonds. The results further suggest that room-temperature AD method is highly favorable to fabricate heterogeneous composite films for application to film resistors.

Graphical Abstract

Keywords

Aerosol deposition Film resistor Al2O3/Cu composite film Adhesive strength Mechanical interlocking Anchoring layer 

Notes

Acknowledgements

This present Research has been conducted by the Research Grant of Kwangwoon University in 2018. And, this work was supported by the National Research Foundation of Korea (NRF) funded by Korean government (MSIP; Ministry of Science, ICT and Future Planning) (No. 2018R1D1A1B07045295) and the High Level Track of Power Semiconductor Technology for Renewable Energy and Electrical Vehicle (No. 20174010201290) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP).

References

  1. 1.
    Bhattacharya, S.K., Tummala, R.R.: Integral passives for next generation of electronic packaging: application of epoxy/ceramic nanocomposites as integral capacitors. Microelectron. J. 32(1), 11–19 (2001)CrossRefGoogle Scholar
  2. 2.
    Chahal, P., Tummala, R.R., Allen, M.G., Swaminathan, M.: A novel integrated decoupling capacitor for MCM-L technology. IEEE Trans. Compon. Packag. Manuf. Technol. Part B: 21(2), 184–193 (1998)CrossRefGoogle Scholar
  3. 3.
    Tummala, R.R.: SOP: what is it and why? A new microsystem-integration technology paradigm-Moore’s law for system integration of miniaturized convergent systems of the next decade. IEEE Trans. Adv. Packag. 27(2), 241–249 (2004)CrossRefGoogle Scholar
  4. 4.
    Bhattacharya, S.K., Tummala, R.R.: Next generation integral passives: materials, processes, and integration of resistors and capacitors on PWB substrates. J. Mater. Sci. Mater. Electron. 11(3), 253–268 (2000)CrossRefGoogle Scholar
  5. 5.
    Lin, R.C., Lee, T.K., Wu, D.H., Lee, Y.C.: A study of thin film resistors prepared using Ni–Cr–Si–Al–Ta high entropy alloy. Adv. Mater. Sci. Eng. 2015, 1–7 (2015)Google Scholar
  6. 6.
    Lai, L., Zeng, W., Fu, X., Sun, R., Du, R.: Annealing effect on the electrical properties and microstructure of embedded Ni–Cr thin film resistor. J. Alloys Compd. 538, 125–130 (2012)CrossRefGoogle Scholar
  7. 7.
    Vinayak, S., Vyas, H.P., Muraleedharan, K., Vankar, V.D.: Ni–Cr thin film resistor fabrication for GaAs monolithic microwave integrated circuits. Thin Solid Films 514(1–2), 52–57 (2006)CrossRefGoogle Scholar
  8. 8.
    Vinayak, S., Vyas, H.P., Vankar, V.D.: Microstructure and electrical characteristics of Ni–Cr thin films. Thin Solid Films 515(18), 7109–7116 (2007)CrossRefGoogle Scholar
  9. 9.
    Rolke, J.: Nichrome thin film technology and its application. Electrocompon. Sci. Technol. 9(1), 51–57 (1981)CrossRefGoogle Scholar
  10. 10.
    Jacq, C., Maeder, T., Ryser, P.: High-strain response of piezoresistive thick-film resistors on titanium alloy substrates. J. Eur. Ceram. Soc. 24(6), 1897–1900 (2004)CrossRefGoogle Scholar
  11. 11.
    Ma, E., Anderson, W.A.: Mechanism of stabilizing RuO2/Ta2N double layer thin film resistors. Mater. Sci. Eng., B 47(2), 161–166 (1997)CrossRefGoogle Scholar
  12. 12.
    Wang, C.M., Hsieh, J.H., Fu, Y.Q., Li, C., Chen, T.P., Lam, U.T.: Electrical properties of TaN–Cu nanocomposite thin films. Ceram. Int. 30(7), 1879–1883 (2004)CrossRefGoogle Scholar
  13. 13.
    Berg, S., Nyberg, T.: Fundamental understanding and modeling of reactive sputtering processes. Thin Solid Films 476(2), 215–230 (2005)CrossRefGoogle Scholar
  14. 14.
    Vygranenko, Y., Wang, K., Chaji, R., Vieira, M., Robertson, J., Nathan, A.: Stability of indium-oxide thin-film transistors by reactive ion beam assisted deposition. Thin Solid Films 517(23), 6341–6344 (2009)CrossRefGoogle Scholar
  15. 15.
    Yan, Z., Ma, Y., Deng, P., Yu, Z., Liu, C., Song, Z.: Ag–N doped ZnO film and its p–n junction fabricated by ion beam assisted deposition. Appl. Surf. Sci. 256(7), 2289–2292 (2010)CrossRefGoogle Scholar
  16. 16.
    Smidt, F.A.: Use of ion beam assisted deposition to modify the microstructure and properties of thin films. Int. Mater. Rev. 35(1), 61–128 (1990)CrossRefGoogle Scholar
  17. 17.
    Pyun, M.W., Kim, E.J., Yoo, D.H., Hahn, S.H.: Oblique angle deposition of TiO2 thin films prepared by electron-beam evaporation. Appl. Surf. Sci. 257(4), 1149–1153 (2010)CrossRefGoogle Scholar
  18. 18.
    Yao, J.K., Huang, H.L., Ma, J.Y., Jin, Y.X., Zhao, Y.A., Shao, J.D., He, H.B., Yi, K., Fan, Z.X., Zhang, F., Wu, Z.Y.: High refractive index TiO2 film deposited by electron beam evaporation. Surf. Eng. 25(3), 257–260 (2009)CrossRefGoogle Scholar
  19. 19.
    Wang, Y., Lin, Z., Cheng, X., Xiao, H., Zhang, F., Zou, S.: Study of HfO2 thin films prepared by electron beam evaporation. Appl. Surf. Sci. 228(1–4), 93–99 (2004)CrossRefGoogle Scholar
  20. 20.
    Ramasamy, K., Malik, M.A., O’Brien, P.: The chemical vapor deposition of Cu2ZnSnS4 thin films. Chem. Sci. 2(6), 1170–1172 (2011)CrossRefGoogle Scholar
  21. 21.
    Wei, Y.Y., Eres, G., Merkulov, V.I., Lowndes, D.H.: Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition. Appl. Phys. Lett. 78(10), 1394–1396 (2001)CrossRefGoogle Scholar
  22. 22.
    Alguero, M., Ricote, J., Torres, M., Amorin, H., Alberca, A., Iglesias-Freire, O., Nemes, N., Holgado, S., Cervera, M., Piqueras, J., Asenjo, A., Garcia-Hernandez, M.: Thin film multiferroic nanocomposites by ion implantation. ACS Appl. Mater. Interfaces. 6(3), 1909–1915 (2014)CrossRefGoogle Scholar
  23. 23.
    Shi, W., Zhang, H., Zhang, G., Li, Z.: Modifying residual stress and stress gradient in LPCVD Si3N4 film with ion implantation. Sens. Actuators A Phys. 130–131, 352–357 (2006)CrossRefGoogle Scholar
  24. 24.
    Akedo, J.: Aerosol deposition method for fabrication of nano crystal ceramic layer. Mater. Sci. Forum 449–452, 43–48 (2004)CrossRefGoogle Scholar
  25. 25.
    Lee, J.H., Kim, H.K., Lee, S.H., Choi, K., Lee, Y.H.: Effect of Zn filler for percolative BaTiO3/Zn composite films fabricated by aerosol deposition. Ceram. Int. 41(9), 12153–12157 (2015)CrossRefGoogle Scholar
  26. 26.
    Lee, W.H., Kim, H.J., Lee, D.W., Jeong, M.G., Lim, D.S., Nam, S.M.: Al2O3-nanodiamond composite coatings with high durability and hydrophobicity prepared by aerosol deposition. Surf. Coat. Technol. 206(22), 4679–4684 (2012)CrossRefGoogle Scholar
  27. 27.
    Cho, M.Y., Lee, D.W., Kim, I.S., Lee, W.H., Yoo, J.W., Ko, P.J., Koo, S.M., Choi, Y.K., Oh, J.M.: Formation of silver films for advanced electrical properties by using aerosol deposition process. Jpn. J. Appl. Phys. 57(11S), 11UF05 (2018)CrossRefGoogle Scholar
  28. 28.
    Lee, D.W., Shin, M.C., Kim, Y.N., Oh, J.M.: Brushite ceramic coatings for dental brace brackets fabricated via aerosol deposition. Ceram. Int. 43(1), 1044–1051 (2017)CrossRefGoogle Scholar
  29. 29.
    Kim, C.W., Choi, J.H., Kim, H.J., Lee, D.W., Hyun, C.Y., Nam, S.M.: Effects of interlayer roughness on deposition rate and morphology of aerosol-deposited Al2O3 thick films. Ceram. Int. 38(7), 5621–5627 (2012)CrossRefGoogle Scholar
  30. 30.
    Lee, D.W., Kwon, O.Y., Cho, W.J., Song, J.K., Kim, Y.N.: Characteristics and mechanism of Cu films fabricated at room temperature by aerosol deposition. Nanoscale Res. Lett. 11(1), 162 (2016)CrossRefGoogle Scholar
  31. 31.
    Kim, H.J., Nam, S.M.: Powder preparation in aerosol deposition for Al2O3-polyimide composite thick films. Electron. Mater. Lett. 8(1), 65–70 (2012)CrossRefGoogle Scholar
  32. 32.
    Kim, J.H., Kim, H.K., Lee, S.H., Lee, S.G., Kim, J.S., Kim, J.S., Lee, Y.H.: Dielectric properties of percolative BaTiO3/Ni composite film fabricated by aerosol deposition process. J. Mater. Sci. Mater. Electron. 27(8), 8567–8572 (2016)CrossRefGoogle Scholar
  33. 33.
    Cho, M.Y., Park, S.J., Kim, S.M., Lee, D.W., Kim, H.K., Koo, S.M., Moon, K.S., Oh, J.M.: Hydrophobicity and transparency of Al2O3-based poly-tetra-fluoro-ethylene composite thin films using aerosol deposition. Ceram. Int. 44(14), 16548–16555 (2018)CrossRefGoogle Scholar
  34. 34.
    Lee, D.W., Cho, M.Y., Kim, I.S., Kim, Y.N., Lee, D., Koo, S.M., Park, C., Oh, J.M.: Experimental and numerical study for Cu metal coatings at room temperature via powder spray process. Surf. Coat. Technol. 353, 66–74 (2018)CrossRefGoogle Scholar
  35. 35.
    Nouri, A., Hodgson, P.D., Wen, C.: Effect of ball-milling time on the structural characteristics of biomedical porous Ti–Sn–Nb alloy. Mater. Sci. Eng., C 31(5), 921–928 (2011)CrossRefGoogle Scholar
  36. 36.
    Hanft, D., Exner, J., Schubert, M., Stocker, T., Fuierer, P., Moos, R.: An overview of the aerosol deposition method: process fundamentals and new trends in materials applications. J. Ceram. Sci. Technol. 6(3), 147–182 (2015)Google Scholar
  37. 37.
    Kim, H.J., Yoon, Y.J., Kim, J.H., Nam, S.M.: Application of Al2O3-based polyimide composite thick films to integrated substrates using aerosol deposition method. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 161(1), 104–108 (2009)CrossRefGoogle Scholar
  38. 38.
    Fu, K., Sheppard, L., Chang, L., An, X., Yang, C., Ye, L.: Comparative study on plasticity and fracture behavior of Ti/Al multilayers. Tribol. Int. 126, 344–351 (2018)CrossRefGoogle Scholar
  39. 39.
    Azhar, A.Z.A., Mohamad, H., Ratnam, M.M., Ahmad, Z.A.: The effects of MgO addition on microstructure, mechanical properties and wear performance of zirconia-toughened alumina cutting inserts. J. Alloys Compd. 497(1–2), 316–320 (2010)CrossRefGoogle Scholar
  40. 40.
    Chaudhri, M.M.: Subsurface strain distribution around Vickers hardness indentations in annealed polycrystalline copper. Acta Mater. 46(9), 3047–3056 (1998)CrossRefGoogle Scholar
  41. 41.
    Hench, L.L., Splinter, R.J., Allen, W.C., Greenlee, T.K.: Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 5(6), 117–141 (1971)CrossRefGoogle Scholar
  42. 42.
    Krupicka, A., Johansson, M., Hult, A.: Use and interpretation of scratch tests on ductile polymer coatings. Prog. Org. Coat. 46(1), 32–48 (2003)CrossRefGoogle Scholar
  43. 43.
    Miranda-hernandez, J.G., Moreno-guerrero, S., Soto-guzman, A.B., Rocha-rangel, E.: Production and characterization of Al2O3-Cu composite materials. J. Ceram. Proc. Res. 7, 311–315 (2006)Google Scholar
  44. 44.
    Cho, M.Y., Lee, D.W., Kim, W.J., Kim, Y.N., Koo, S.M., Lee, D., Moon, K.S., Oh, J.M.: Fabrication of TiO2/Cu hybrid composite films with near zero TCR and high adhesive strength via aerosol deposition. Ceram. Int. 44(15), 18736–18742 (2018)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Electronic Materials EngineeringKwangwoon UniversitySeoulRepublic of Korea
  2. 2.Material Technology CenterKorea Testing LaboratorySeoulRepublic of Korea
  3. 3.Department of Electrical EngineeringChosun UniversityGwangjuRepublic of Korea
  4. 4.Samsung Electro-MechanicsSuwon-siRepublic of Korea

Personalised recommendations