Advertisement

Electronic Materials Letters

, Volume 15, Issue 2, pp 141–148 | Cite as

Tuning of Graphene Work Function by Alkyl Chain Length in Amine-Based Compounds

  • Sa-Rang Bae
  • Tae Won Lee
  • Kwangyong ParkEmail author
  • Soo Young KimEmail author
Original Article - Chemistry and Biomaterials

Abstract

In this study, the effect of alkyl chain length in amine-based compounds on the work function of graphene was investigated. The graphene was synthesized by the chemical vapor deposition method. The graphene layers were functionalized by amine-based groups using a simple spin-coating method. The amine-based compounds were composed of phenyl amine and methyl-, ethyl-, propyl-, n/t-butyl-, and octyl-phenyl amine groups. Materials were confirmed by X-ray photoelectron spectroscopy to show the C and N bonding. The work function of the doped graphene layers decreased because of the effect of the doping agents. Among the doped graphene samples, t-butyl-phenyl amine functionalized graphene achieved the lowest work function of 3.89 eV (compared with 4.43 eV for pristine graphene). Further, the sheet resistance of n-doped graphene increased, confirming the high concentration of n-doping agents on the graphene layers. These results suggest the best alkyl chain is the t-butyl group to reduce the work function of graphene, and promise the use of these materials as cathodes for opto-electronic applications.

Graphical Abstract

Keywords

Graphene Work function Amine-based compounds n-doping 

Notes

Acknowledgements

This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (Nos. 2018R1A4A1022647); and this research was supported by the Chung-Ang University Research Scholarship Grants in 2015.

References

  1. 1.
    Geim, A.K.: Graphene: status and prospects. Science 324, 1530–1534 (2009)CrossRefGoogle Scholar
  2. 2.
    Du, X., Skachko, I., Barker, A., Andrei, E.Y.: Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008)CrossRefGoogle Scholar
  3. 3.
    Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S., Stormer, H.L., Zeitler, U., Maan, J., Boebinger, G., Kim, P., Geim, A.K.: Room-temperature quantum hall effect in graphene. Science 315, 1379 (2007)CrossRefGoogle Scholar
  4. 4.
    Obraztsov, A., Obraztsova, E.A., Tyurnina, A.V., Zolotukhin, A.: Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 45, 2017–2021 (2007)CrossRefGoogle Scholar
  5. 5.
    Im, H., Kim, J.H.: Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite. Carbon 50, 5429–5440 (2012)CrossRefGoogle Scholar
  6. 6.
    Kwon, K.C., Son, H.J., Hwang, Y.H., Oh, J.H., Lee, T.-W., Jang, H.W., Kwak, K., Park, K., Kim, S.Y.: Effect of amine-based organic compounds on the work-function decrease of graphene. J. Phys. Chem. C 120, 1309–1316 (2016)CrossRefGoogle Scholar
  7. 7.
    Bae, S., Kim, H.K., Lee, Y.B., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.-J., Kim, K.S., Ozilmaz, B., Ahn, J.H., Hong, B.H., Iijima, S.: Roll-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010)CrossRefGoogle Scholar
  8. 8.
    Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)CrossRefGoogle Scholar
  9. 9.
    Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banergee, S.K., Colombo, L., Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)CrossRefGoogle Scholar
  10. 10.
    Kwon, K.C., Choi, K.S., Kim, B.J., Lee, J.-L., Kim, S.Y.: Work-function decrease of graphene sheet using alkali metal carbonates. J. Phys. Chem. C 116, 26586–26591 (2012)CrossRefGoogle Scholar
  11. 11.
    Kwon, K.C., Choi, K.S., Kim, C., Kim, S.Y.: Effect of transition-metal chlorides on graphene properties. Phys. Status Solidi a 211, 1794–1800 (2014)CrossRefGoogle Scholar
  12. 12.
    Kwon, K.C., Choi, K.S., Kim, S.Y.: Increased work function in few-layer graphene sheets via metal chloride doping. Adv. Funct. Mater. 22, 4724–4731 (2012)CrossRefGoogle Scholar
  13. 13.
    Kwon, K., Kim, B.J., Lee, J.-L., Kim, S.Y.: Role of ionic chlorine in the thermal degradation of metal chloride-doping graphene sheets. J. Mater. Chem. C 1, 253–259 (2013)CrossRefGoogle Scholar
  14. 14.
    Christodoulou, C., Giannakopoulos, A., Nardi, M.V., Ligorio, G., Oehzelt, M., Chen, L., Pasquali, L., Timpel, M., Giglia, A., Nannarone, S., Norman, P., Parvez, K., Mullen, K., Deljonne, D., Koch, N.: Tuning the work function of graphene-on-quartz with a high weight molecualr acceptor. J. Phys. Chem. C 118, 4784–4790 (2014)CrossRefGoogle Scholar
  15. 15.
    Gholizadeh, R., Yu, Y.-X.: Work function of pristine and heteroatom-doped graphenes under different external electric fields:an ab initio DFT study. J. Phys. Chem. C 118, 28274–28282 (2014)CrossRefGoogle Scholar
  16. 16.
    Yu, Y.-X.: A dispersion-corrected DFT study on adsorption of battery active materials anthraquinone and its derivatives on monolayer graphene and h-BN. J. Mater. Chem. A 2, 8910–8917 (2014)CrossRefGoogle Scholar
  17. 17.
    Yu, Y.-X.: Binding energy and work function of organic electrode materials phenanthraquinone, pyromellitic dianhydride and their derivatives adsorbed on graphene. Appl. Mater. Interfaces 6, 16267–16275 (2014)CrossRefGoogle Scholar
  18. 18.
    Basko, D.M., Piscanec, S., Ferrari, A.C.: Electron–electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Phys. Rev. B 80, 165413 (2009)CrossRefGoogle Scholar
  19. 19.
    Dong, X., Fu, D., Fang, W., Shi, Y., Chen, P., Li, L.-J.: Doping single-layer graphene with aromatic molecules. Small 5(12), 1422 (2009)CrossRefGoogle Scholar
  20. 20.
    Chen, Z., Santoso, I., Wang, R., Xie, L.F., Mao, H.Y., Huang, H., Wang, Y.Z., Gao, X.Y., Chen, Z.K., Ma, D., Wee, A.T.S., Chen, W.: Surface transfer hole doping of epitaxial graphene using MoO3 thin film. Appl. Phys. Lett. 96, 213104 (2010)CrossRefGoogle Scholar
  21. 21.
    Han, C., Lin, J., Xiang, D., Wang, C., Wang, L., Chen, W.: Improving chemical vapor deposition graphene conductivity using molybdenum trioxide: an in-situ field effect transistor study. Appl. Phys. Lett. 103, 263117 (2013)CrossRefGoogle Scholar
  22. 22.
    Panchakarla, L., Subrahmanyam, K., Saha, S., Govindaraj, A., Krishnamurthy, H., Waghmare, U., Rao, C.N.: Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21, 4726–4730 (2009)Google Scholar
  23. 23.
    Hwang, J.O., Park, J.S., Choi, D.S., Kim, J.Y., Lee, S.H., Lee, K.E., Kim, Y.-H., Song, M.H., Yoo, S., Kim, S.O.: Workfunction-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes. ACS Nano 6, 159–167 (2011)CrossRefGoogle Scholar
  24. 24.
    Deng, Y., Li, Y., Dai, J., Lang, M., Huang, X.: An efficient way to functionalize graphene sheets with presynthesized polymer via ATNRC chemistry. J. Polym. Chem. 49, 1582–1590 (2011)CrossRefGoogle Scholar
  25. 25.
    Ren, L., Huang, S., Zhang, C., Wang, R., Tjiu, W.W., Liu, T.: Functionalization of graphene and grafting of temperature-responsive surfaces from graphene by ATRP “on water”. J. Nanopart. Res. 14, 940 (2012)CrossRefGoogle Scholar
  26. 26.
    Shanmugharaj, A., Yoon, J., Yang, W., Ryu, S.H.: Synthesis, characterization, and surface wettability properties of amine functionalized graphene oxide films with varying amine chain lengths. J. Colloid Interface Sci. 401, 148 (2013)CrossRefGoogle Scholar
  27. 27.
    Kim, C., Yoon, M.-J., Hong, S.H., Park, M., Park, K., Kim, S.Y.: Aromatic substituents for prohibiting side-chain packing and π–π stacking in tin-cored tetrahedral stilbenoids. Electron. Mater. Lett. 12, 388–398 (2016)CrossRefGoogle Scholar
  28. 28.
    Song, S.M., Park, J.K., Sul, O.J., Cho, B.J.: Determination of work function of graphene under a metal electrode and its role in contact resistance. Nano Lett. 12, 3887–3892 (2012)CrossRefGoogle Scholar
  29. 29.
    Shi, Y., Kim, K.K., Reina, A., Hofmann, M., Li, L.-J., Kong, J.: Work function engineering of graphene electrode via chemical doping. ACS Nano 4, 2689–2694 (2010)CrossRefGoogle Scholar
  30. 30.
    Jo, I., Kim, Y., Moon, J., Park, S., Moon, J.S., Park, W.B., Lee, J.S., Hong, H.: Stable n-type doping of graphene via high-molecular-weight ethylene amines. Phys. Chem. Chem. Phys. 17, 29492–29495 (2015)CrossRefGoogle Scholar
  31. 31.
    Ishikawa, R., Bando, M., Morimoto, Y., Sandhu, A.: Doping graphene films via chemically mediated charge transfer. Nano Res Lett 6, 111 (2011)CrossRefGoogle Scholar
  32. 32.
    Lee, W.H., Suk, J.W., Lee, J., Hao, Y., Park, J., Yang, J.W., Ha, H.-W., Murali, S., Chou, H., Akinwande, H., Kim, K.S., Ruoff, R.S.: Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic. ACS Nano 6, 1284–1290 (2012)CrossRefGoogle Scholar
  33. 33.
    Podila, R., Rao, R., Tsuchikawa, R., Ishigami, M., Rao, A.M.: Raman spectroscopy of folded and scrolled graphene. ACS Nano 6, 5784–5790 (2012)CrossRefGoogle Scholar
  34. 34.
    Sun, T., Wang, Z., Shi, Z., Ran, G., Xu, W., Wang, Z., Li, Y., Dai, L., Qin, G.: Multilayered graphene used as anode of organic light emitting devices. Appl. Phys. Lett. 96, 55 (2010)Google Scholar
  35. 35.
    Ferrari, A.C.: Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)CrossRefGoogle Scholar
  36. 36.
    Kwon, K.C., Son, P.K., Kim, S.Y.: Ion beam irradiation of few-layer graphene and its application to liquid crystal cells. Carbon 67, 352–359 (2014)CrossRefGoogle Scholar
  37. 37.
    Oh, J.H., Choi, G.J., Kwon, K.C., Bae, S.-R., Jang, H.W., Gwag, J.S., Kim, S.Y.: Ion-beam-irradiated CYTOP-transferred graphene for liquid crystal cells. Electron. Mater. Lett. 13, 277–285 (2017)CrossRefGoogle Scholar
  38. 38.
    Zafar, Z., Ni, Z.H., Wu, X., Shi, Z.X., Nan, H.Y., Bai, J., Sun, L.T.: Evolution of raman spectra in nitrogen doped graphene. Carbon 61, 57–62 (2013)CrossRefGoogle Scholar
  39. 39.
    Ramanathan, T., Fisher, F., Ruoff, R., Brinson, L.C.: Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem. Mater. 17, 1290–1295 (2005)CrossRefGoogle Scholar
  40. 40.
    Jansen, R., Bekkum, H.V.: XPS of nitrogen-containing functional groups on activated carbon. Carbon 33, 1021–1027 (1995)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.School of Chemical Engineering and Materials ScienceChung-Ang UniversitySeoulRepublic of Korea

Personalised recommendations