Electronic Materials Letters

, Volume 15, Issue 2, pp 216–226 | Cite as

Variation in Structural, Electrical and Optical Properties of Selenium Nanowires After Irradiation with Ni6+ Ions

  • Suresh Panchal
  • R. P. ChauhanEmail author
Original Article - Nanomaterials


The effect of Ni ion irradiation on selenium nanowires of 80 nm diameter is studied in the present work. Se nanowires were prepared by using electrodeposition technique in polycarbonate membrane. Changes in the structural, optical and electrical properties are studied using XRD, UV/Vis spectroscopy and current–voltage characteristics, of the pristine and irradiated samples. X-ray diffraction study confirms the variation in peak intensity without any shifting in peak position. Variation in texture coefficient and grain size was clearly observed which is a consequence of changing plane orientation, irradiation induced grain growth and grain fragmentation. A decrease in the optical band gap takes place due to interstitial energy band states in the vicinity of conduction and valence band. IVC also shows variation in the conductivity which is due to the generation of current carriers with the passage of energetic ions.

Graphical Abstract


Ion irradiation Selenium nanowires Structural analysis Optical analysis Electrical properties Impedance 



Authors are thankful to IUAC, New Delhi, India, for providing material science beam line of 15UD pelletron for irradiation of the samples. We are also thankful for the assistance provided by the technical staff during irradiation experiment. A financial support provided by IUAC in the form of Project (IUAC/XIII.7/UFR-56303) also thankfully acknowledged.


  1. 1.
    Arnold, M.S., Avouris, P., Pan, Z.W., Wang, Z.L.: Field-effect transistors based on single semiconducting oxide nanobelts. J. Phys. Chem. B 107, 659–663 (2003)CrossRefGoogle Scholar
  2. 2.
    Martel, R., Schmidt, T., Shea, H.R., Hertel, T., Avouris, P.: Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998)CrossRefGoogle Scholar
  3. 3.
    Wang, Z.L.: Piezoelectric nanogenerators based on zinc oxide nanowire. Arrays Sci. 80(312), 242–246 (2006)Google Scholar
  4. 4.
    Feng, X., Shankar, K., Varghese, O.K., Paulose, M., Latempa, T.J., Grimes, C.: Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett. 8, 3781–3786 (2008)CrossRefGoogle Scholar
  5. 5.
    Gates, B., Mayers, B., Cattle, B., Xia, Y.: Synthesis and characterization of uniform nanowires of trigonal selenium. Adv. Funct. Mater. 12, 219 (2002)CrossRefGoogle Scholar
  6. 6.
    Shoaf, C.R., Heizer, W.D., Caplow, M.: Uptake of the components of phenylalanylphenylalanine and maltose by intestinal epithelium. Biochim. Biophys. Acta Biomembr. 600, 939–949 (1980)CrossRefGoogle Scholar
  7. 7.
    Liao, F., Han, X., Zhang, Y., Chen, H., Xu, C.: CTAB-assisted solvothermal synthesis of ultralong t-selenium nanowires and bundles using glucose as green reducing agent. Mater. Lett. 214, 41–44 (2018)CrossRefGoogle Scholar
  8. 8.
    Kumar, N., Kumar, R., Kumar, S., Chakarvarti, S.K.: Microstructural, optical and electrical investigations of large scale selenium nanowires prepared by template electrodeposition. J. Mater. Sci. Mater. Electron. 25, 3537–3542 (2014)CrossRefGoogle Scholar
  9. 9.
    Steichen, M., Dale, P.: Synthesis of trigonal selenium nanorods by electrodeposition from an ionic liquid at high temperature. Electrochem. Commun. 13, 865–868 (2011)CrossRefGoogle Scholar
  10. 10.
    Chen, H., Shin, D.W., Nam, J.G., Kwon, K.W., Yoo, J.B.: Selenium nanowires and nanotubes synthesized via a facile template-free solution method. Mater. Res. Bull. 45, 699–704 (2010)CrossRefGoogle Scholar
  11. 11.
    Huczko, A.: Template-based synthesis of nanomaterials. Appl. Phys. A 70(4), 365–376 (2000)CrossRefGoogle Scholar
  12. 12.
    Jain, I.P., Agarwal, G.: Ion beam induced surface and interface engineering. Surf. Sci. Rep. 66, 77–172 (2011)CrossRefGoogle Scholar
  13. 13.
    Avasthi, D.: Modification and characterisation of materials by swift heavy ions. Def. Sci. J. 59, 401–412 (2009)CrossRefGoogle Scholar
  14. 14.
    Kanjilal, D.: Swift heavy ion-induced modification and track formation in materials. Curr. Sci. 80, 1560–1566 (2001)Google Scholar
  15. 15.
    Kumar, V., Jaiswal, M.K., Gupta, R., Ram, J., Sulania, I., Ojha, S., et al.: Effect of low energy (keV) ion irradiation on structural, optical and morphological properties of SnO2–TiO2 nanocomposite thin films. J. Mater. Sci. Mater. Electron. 29(15), 13328–13336 (2018)CrossRefGoogle Scholar
  16. 16.
    Chauhan, V., Gupta, T., Koratkar, N., Kumar, R.: Studies of the electronic excitation modifications induced by SHI of Au ions in RF sputtered ZrO2 thin films. Mater. Sci. Semicond. Process. 88, 262–272 (2018)CrossRefGoogle Scholar
  17. 17.
    Kumar, R., De, U., Prasad, R.: Physical and chemical response of 70 MeV carbon ion irradiated polyether sulphone polymer. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 248(2), 279–283 (2006)CrossRefGoogle Scholar
  18. 18.
    McPherson, M.: Infrared photoconduction in radiation-damaged silicon diodes. J. Opt. A Pure Appl. Opt. 7, S325–S330 (2005)CrossRefGoogle Scholar
  19. 19.
    Pillai, V.R.V., Khamari, S.K., Dixit, V.K., Ganguli, T., Kher, S., Oak, S.M.: Effect of γ-ray irradiation on breakdown voltage, ideality factor, dark current and series resistance of GaAs p–i–n diode. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip 685, 41–45 (2012)CrossRefGoogle Scholar
  20. 20.
    Choudhary, R., Chauhan, R.P.: Swift heavy ion induced modifications in optical and electrical properties of cadmium selenide thin films. Electron. Mater. Lett. 13(4), 330–338 (2017)CrossRefGoogle Scholar
  21. 21.
    Mishra, M., Alwarappan, S., Kanjilal, D., Mohanty, T.: The effect of low energy nitrogen ion implantation on graphene nanosheets. Electron. Mater. Lett. 14(4), 488–498 (2018)CrossRefGoogle Scholar
  22. 22.
    Panchal, S., Chauhan, R.P.: Lithium ion beam impact on selenium nanowires. Phys. E Low Dimens. Syst. Nanostruct. 87, 37–43 (2017)CrossRefGoogle Scholar
  23. 23.
    Panchal, S., Chauhan, R.P.: Krypton ion implantation effect on selenium nanowires. Phys. Lett. A 381, 2636–2642 (2017)CrossRefGoogle Scholar
  24. 24.
    Gehlawat, D., Chauhan, R.P.: Swift heavy ions induced variation in the electronic transport through Cu nanowires. Mater. Chem. Phys. 145, 60–67 (2014)CrossRefGoogle Scholar
  25. 25.
    Narula, C., Chauhan, R.P.: High dose gamma ray exposure effect on the properties of CdSe nanowires. Radiat. Phys. Chem. 144, 405–412 (2018)CrossRefGoogle Scholar
  26. 26.
    Paroni, R.: Optimal bounds on texture coefficients. J. Elast. Phys. Sci. Solids 60(1), 19–34 (2000)Google Scholar
  27. 27.
    Cullity, B.D.: Elements of X-ray Diffraction, 2nd edn. Addison-Wesley Publishing Company Inc, Reading (1978)Google Scholar
  28. 28.
    Barrett, C.S., Massalski, T.B.: Structure of metals: crystallographic methods, principles and data. In: International Series on Materials Science and Technology, vol. 35, 3rd edn, pp. 1–654. Pergamon (1980)Google Scholar
  29. 29.
    Harris, G.B.: Quantitative measurement of preferred orientation in rolled uranium bars. Philos. Mag. J. Sci. 43, 113–123 (1952)CrossRefGoogle Scholar
  30. 30.
    Cullity, B.D., Stock, S.R.: Elements of X-ray Diffraction, 3rd edn Prentice Hall. New York, pp. 174–177 (2001)Google Scholar
  31. 31.
    Stokes, A.R., Wilson, A.J.C.: The diffraction of X rays by distorted crystal aggregates—I. Proc. Phys. Soc. 56, 174–181 (1944)CrossRefGoogle Scholar
  32. 32.
    Williamson, G., Hall, W.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)CrossRefGoogle Scholar
  33. 33.
    Tauc, J., Menth, A.: States in the gap. J. Non Cryst. Solids 8–10, 569–585 (1972)CrossRefGoogle Scholar
  34. 34.
    Mohanta, D., Nath, S.S., Mishra, N.C., Choudhury, A.: Irradiation induced grain growth and surface emission enhancement of chemically tailored ZnS: Mn/PVOH nanoparticles by Cl+9 ion impact. Bull. Mater. Sci. 26, 289–294 (2003)CrossRefGoogle Scholar
  35. 35.
    Thakurdesai, M., Mahadkar, A., Kulriya, P.K., Kanjilal, D., Bhattacharyya, V.: Synthesis of nanodimensional TiO2 thin films using energetic ion beam. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 266, 1343–1348 (2008)CrossRefGoogle Scholar
  36. 36.
    Townsend, P.D., Chandler, P.J., Zhang, L.: Optical Effects of Ion Implantation, vol. 13. Cambridge University Press, Cambridge (2006)Google Scholar
  37. 37.
    Talin, A.A., Léonard, F., Swartzentruber, B.S., Wang, X., Hersee, S.D.: Unusually strong space-charge-limited current in thin wires. Phys. Rev. Lett. 101(7), 76802 (2008)CrossRefGoogle Scholar
  38. 38.
    Léonard, F., Tersoff, J.: Novel length scales in nanotube devices. Phys. Rev. Lett. 83, 5174–5177 (1999)CrossRefGoogle Scholar
  39. 39.
    Gu, Y., Lauhon, L.J.: Space-charge-limited current in nanowires depleted by oxygen adsorption. Appl. Phys. Lett. 89, 143102 (2006)CrossRefGoogle Scholar
  40. 40.
    Schricker, A.D., Davidson, F.M., Wiacek, R.J., Korgel, B.A.: Space charge limited currents and trap concentrations in GaAs nanowires. Nanotechnology 17, 2681–2688 (2006)CrossRefGoogle Scholar
  41. 41.
    Kannappan, P., Asokan, K., Krishna, J.B.M., Dhanasekaran, R.: Effect of SHI irradiation on structural, surface morphological and optical studies of CVT grown ZnSSe single crystals. J. Alloys Compd. 580, 284–289 (2013)CrossRefGoogle Scholar
  42. 42.
    Kumar, N., Kumar, R., Kumar, S., Chakarvarti, S.K.: Modifications in optical and electrical properties of selenium nanowire arrays using ion beam irradiation. Appl. Phys. A 121, 571–579 (2015)CrossRefGoogle Scholar
  43. 43.
    Rani, S., Puri, N.K., Roy, S.C., Bhatnagar, M.C., Kanjilal, D.: Effect of swift heavy ion irradiation on structure, optical, and gas sensing properties of SnO2 thin films. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 266, 1987–1992 (2008)CrossRefGoogle Scholar
  44. 44.
    Veit, W., Diestel, H., Pregla, R.: Coupling of crossed planar multiconductor systems IEEE. Trans. Microw. Theory Tech. 38, 265–269 (1990)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of TechnologyKurukshetraIndia

Personalised recommendations