Skip to main content
Log in

Design Optimization of Rolling Element Bearings Using Advanced Optimization Technique

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This article concentrates on optimization of fatigue life, i.e., dynamic capacity of rolling element bearings by using a novel optimization approach known as Teaching–Learning-Based optimization. The optimization technique is applied to two cases of bearing, i.e., deep groove ball bearing and cylindrical roller bearing, by considering a large number of bearings and their associated constraints. The chosen problems involve around 9 design variables and the optimized result obtained shows considerable improvement over the previous results, standard catalogues and handbooks. Efforts are also made to validate the obtained results using finite element analysis approach and the simulated results of contact stress and deformation at the contact between inner race and roller are found in close agreement with the obtained optimum results. Thus, this article proves good applicability of proposed optimization approach in bearing design which will be useful to the on field designers to improve the performance of bearings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D :

Outer diameter of bearing

d :

Bore diameter of bearing

B :

Width of bearing

\({D}_{\mathrm{m}}\) :

Pitch diameter

\({D}_{\mathrm{b}}\) :

Ball diameter

\({f}_{\mathrm{i}}\) :

The inner and outer raceway curvature radius coefficient

\({f}_{\mathrm{o}}\) :

The inner and outer raceway curvature radius coefficient

Z :

Number of rolling elements

\({C}_{\mathrm{d}}\) :

Dynamic load rating

\(\propto \) :

Contact angle

L :

Life of the bearing

a :

Constant defined by Lundberg–Palmgren [2]

\(K_{{D\min }} ,K_{{D\max }} ,\varepsilon , {e},{\beta }\) :

Constraints to basic design variables [9]

\(\phi _{{ 0}}\) :

Maximum tolerable assembly angle

\({r}_{1}\) :

Outer ring chamfering height

\({r}_{2}\) :

Outer ring chamfer width

\({r}_{3}\) :

Inner ring chamfer height

\({r}_{4}\) :

Inner ring chamfer width

\({l}_{\mathrm{e}}\) :

Effective length of roller

\({D}_{\mathrm{r}}\) :

Mean diameter of the roller

\({\lambda }\) :

Reduction factor,

\({\nu }\) :

Factor to account for edge loading

\({b}_{\mathrm{m}}\) :

Factor to put up improvements in geometrical accuracies

\(\gamma \) :

Ratio of diameter of rolling element and pitch diameter

d :

Number of design variables

\({N}_{\mathrm{n}}\) :

Population size

\({m}_{1}, {m}_{2}, \ldots ,{m}_{\mathrm{n}}\) :

Mean of population column wise

\({T}_{\mathrm{F}}\) :

Teacher factor

References

  1. He, S.; Prempain, E.; Wu, Q.H.: An improved particle swarm optimizer for mechanical design optimization problems. Eng. Optim. 36(5), 585–605 (2004)

    Article  MathSciNet  Google Scholar 

  2. Hamrock, B.J.; Anderson, W.J.: Rolling-elements bearing. NASA reference publication. 1105 (1983)

  3. Harris, T.A.: Rolling Bearing Analysis, 4th edn. Wiley, New York (2001)

    Google Scholar 

  4. Changsen, W.: Analysis of Rolling Element Bearings. Mechanical Engineering Publications Ltd., London (1991)

    Google Scholar 

  5. Gupta, P.K.: Current status of and future innovations in rolling bearing modeling. Tribol. Trans. 54(3), 394–403 (2011)

    Article  Google Scholar 

  6. Yang, H.; Mathew, J.; Ma, L.: Fault diagnosis of rolling element bearings using basis pursuit. Mech. Syst. Signal Process. 19, 341–356 (2005)

    Article  Google Scholar 

  7. Mehrjou, M.R.; Mariun, N.; Marhaban, M.H.; Misron, N.: Rotor fault condition monitoring techniques for squirrel-cage induction machine-A review. Mech. Syst. Signal Process. 25(8), 2827–2848 (2011)

    Article  Google Scholar 

  8. Choi, D.H.; Yoon, K.C.: A design method of an automotive wheel-bearing unit with discrete design variables using genetic algorithms. J. Tribol. 123, 181–187 (2001)

    Article  Google Scholar 

  9. Chakraborty, I.; Kumar, V.; Nair, S.B.; Tiwari, R.: Rolling element bearing design through genetic algorithms. Eng. Optim. 35(6), 649–659 (2003)

    Article  Google Scholar 

  10. Rao, B.R.; Tiwari, R.: Optimum design of rolling element bearings using genetic algorithms. Mech. Mach. Theory 42, 233–250 (2007)

    Article  MATH  Google Scholar 

  11. Gupta, S.; Tiwari, R.; Nair, S.B.: Multi-objective design optimization of rolling bearings using genetic algorithm. Mech. Mach. Theory 42, 1418–1443 (2007)

    Article  MATH  Google Scholar 

  12. Ganesan, H.; Mohankumar, G.: Optimization of machining techniques in CNC turning centre using genetic algorithm. Arab. J. Sci. Eng. 38, 1529–1538 (2013)

    Article  Google Scholar 

  13. Kumar, K.S.; Tiwari, R.; Reddy, R.S.: “Development of an optimum design methodology of cylindrical roller bearings using genetic algorithms. Int. J. Comput. Methods Eng. Sci. Mech. 9(6), 321–341 (2008)

    Article  MATH  Google Scholar 

  14. Kumar, K.S.; Tiwari, R.; Prasad, P.V.V.N.: An Optimum design of crowned cylindrical roller bearings using genetic algorithms. J. Mech. Des. 131(5), 051011 (2009)

    Article  Google Scholar 

  15. Wei, Y., Chengzu, R.: Optimal design of high speed angular contact ball bearing using a multi-objective evolution algorithm. In: Paper presented at the International Conference on Computing. Control and Industrial Engineering. IEEE, Wuhan, June 5–6 (2010)

  16. Waghole, V.; Tiwari, R.: Optimization of needle roller bearing design using novel hybrid methods. Mech. Mach. Theory 72, 71–85 (2014)

    Article  Google Scholar 

  17. Tiwari, R.; Waghole, V.: Optimization of spherical roller bearing design using artificial bee colony algorithm and grid search method. Int. J. Comput. Methods Eng. Sci. Mech. 16(4), 221–233 (2015)

    Article  Google Scholar 

  18. Rao, R.V.; Savsani, V.J.; Vakharia, D.P.: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43, 303–315 (2011)

    Article  Google Scholar 

  19. Rao, R.V.; Savsani, V.J.; Balic, J.: Teaching-learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems. Eng. Optim. 44(12), 1447–1462 (2012)

    Article  Google Scholar 

  20. Rao, R.V.; Patel, V.: An elitist teaching–learning-based optimization algorithm for solving complex constrained optimization problems. Int. J. Ind. Eng. Comput. 3(4), 535–560 (2012)

    Google Scholar 

  21. Rao, R.V.; Patel, V.: Comparative performance of an elitist teaching–learning-based optimization algorithm for solving unconstrained optimization problems. Int. J. Ind. Eng. Comput. 4, 29–50 (2013)

    Google Scholar 

  22. Rao, R.V.; Kalyankar, V.D.: Parameter optimization of modern machining processes using teaching–learning-based optimization algorithm. Eng. Appl. Artif. Intell. 26, 524–531 (2013)

    Article  Google Scholar 

  23. Rao, R.V.: Teaching Learning Based Optimization and its Engineering Applications. Springer, London (2015)

    Google Scholar 

  24. Rao, R.V.: Review of applications of TLBO algorithm and a tutorial for beginners to solve the unconstrained and constrained optimization problems. Decis. Sci. Lett. 5, 1–30 (2016)

    Google Scholar 

  25. Rao, R.V.; Patel, V.: Multi-objective optimization of combined Brayton and inverse Brayton cycles using advanced optimization algorithms. Eng. Optim. (2011). https://doi.org/10.1080/0305215X.2011.624183

  26. Krishnanand, K. R.; Panigrahi, B. K.; Rout, P. K.; Mohapatra, A.; Application of multi-objective teaching–learning-based algorithm to an economic load dispatch problem with in commensurable objectives. In: Swarm, Evolutionary, and Memetic Computing, Lecture Notes in Computer Science, vol. 7076. Springer, Berlin (2011)

  27. Togan, V.: Design of planar steel frames using Teaching–Learning based optimization. Eng. Struct. 34, 225–232 (2012)

    Article  Google Scholar 

  28. Pawar, P.J.; Rao, R.V.: Parameter optimization of machining processes using teaching–learning-based optimization algorithm. Int. J. Adv. Manuf. Technol. 67(5–8), 995–1006 (2013)

    Article  Google Scholar 

  29. Shigley, J.E.: Mechanical Engineering Design. McGraw-Hill Book Company, New York (2011)

    Google Scholar 

  30. TIMKEN: Ball Bearing Catalog (2011)

  31. SKF: General Catalogue. Germany (2005)

  32. Poplawski, J.V.; Peters, S.M.; Zaretsky, E.V.: Effect of roller profile on cylindrical roller bearing life prediction–Part I: comparison of bearing life theories. Tribol. Trans. 44(3), 339–350 (2001a)

    Article  Google Scholar 

  33. Poplawski, J.V.; Peters, S.M.; Zaretsky, E.V.: Effect of roller profile on cylindrical roller bearing life prediction–Part II: comparison of roller profiles. Tribol. Trans. 44(3), 417–427 (2001b)

    Article  Google Scholar 

  34. Cavallaro, G.; Nelias, D.; Bon, F.: Analysis of high-speed inter shaft cylindrical roller bearing with flexible rings. Tribol. Trans. 48(2), 154–164 (2005)

    Article  Google Scholar 

  35. Demirhan, N.; Kanber, B.: Stress and displacement distributions on cylindrical roller bearing rings using FEM. Mech. Based Des. Struct. Mach. Int. J. 36, 86–102 (2008)

    Article  Google Scholar 

  36. Fujiwara, H.; Kobayashi, T.; Kawase, T.; Yamauchi, K.: Optimized logarithmic roller crowning design of cylindrical roller bearings and its experimental demonstration. Tribol. Trans. 53(6), 909–916 (2010)

    Article  Google Scholar 

  37. Lostado, R.; Garcia, R.E.; Martinez, R.F.: Optimization of operating conditions for a double-row tapered roller bearing. Int. J. Mech. Mater. Des. (2015). https://doi.org/10.1007/s10999-015-9311-4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Dandagwhal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dandagwhal, R.D., Kalyankar, V.D. Design Optimization of Rolling Element Bearings Using Advanced Optimization Technique. Arab J Sci Eng 44, 7407–7422 (2019). https://doi.org/10.1007/s13369-019-03767-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03767-0

Keywords

Navigation