Characterization of Isomeric Glycans by Reversed Phase Liquid Chromatography-Electronic Excitation Dissociation Tandem Mass Spectrometry

  • Yang Tang
  • Juan Wei
  • Catherine E. Costello
  • Cheng Lin
Focus: Mass Spectrometry in Glycobiology and Related Fields: Research Article


The occurrence of numerous structural isomers in glycans from biological sources presents a severe challenge for structural glycomics. The subtle differences among isomeric structures demand analytical methods that can provide structural details while working efficiently with on-line glycan separation methods. Although liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a powerful tool for mixture analysis, the commonly utilized collision-induced dissociation (CID) method often does not generate a sufficient number of fragments at the MS2 level for comprehensive structural characterization. Here, we studied the electronic excitation dissociation (EED) behaviors of metal-adducted, permethylated glycans, and identified key spectral features that could facilitate both topology and linkage determinations. We developed an EED-based, nanoscale, reversed phase (RP)LC-MS/MS platform, and demonstrated its ability to achieve complete structural elucidation of up to five structural isomers in a single LC-MS/MS analysis.

Graphical Abstract


Isomer analysis Glycan FTICR MS Electronic excitation dissociation Reversed phase liquid chromatography 


Funding Information

This research is supported by NIH grants P41 GM104603, R21 GM122635, U01 CA221234, and S10 RR025082.

Supplementary material

13361_2018_1943_MOESM1_ESM.docx (320 kb)
ESM 1 (DOCX 319 kb)


  1. 1.
    Apweiler, R., Hermjakob, H., Sharon, N.: On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta. 1473, 4–8 (1999)CrossRefGoogle Scholar
  2. 2.
    Collins, B.E., Paulson, J.C.: Cell surface biology mediated by low affinity multivalent protein–glycan interactions. Curr. Opin. Chem. Biol. 8, 617–625 (2004)CrossRefGoogle Scholar
  3. 3.
    Pang, P.-C., Chiu, P.C., Lee, C.-L., Chang, L.-Y., Panico, M., Morris, H.R., Haslam, S.M., Khoo, K.-H., Clark, G.F., Yeung, W.S.: Human sperm binding is mediated by the sialyl-LewisX oligosaccharide on the zona pellucida. Science. 333, 1761–1764 (2011)CrossRefGoogle Scholar
  4. 4.
    Takada, A., Ohmori, K., Yoneda, T., Tsuyuoka, K., Hasegawa, A., Kiso, M., Kannagi, R.: Contribution of carbohydrate antigens sialyl Lewis A and sialyl Lewis X to adhesion of human cancer cells to vascular endothelium. Cancer Res. 53, 354–361 (1993)Google Scholar
  5. 5.
    Zaia, J.: Mass spectrometry and the emerging field of glycomics. Chem. Biol. 15, 881–892 (2008)CrossRefGoogle Scholar
  6. 6.
    Cummings, R.D., Pierce, J.M.: The challenge and promise of glycomics. Chem. Biol. 21, 1–15 (2014)CrossRefGoogle Scholar
  7. 7.
    Kornfeld, R., Kornfeld, S.: Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664 (1985)CrossRefGoogle Scholar
  8. 8.
    Helenius, A., Aebi, M.: Intracellular functions of N-linked glycans. Science. 291, 2364–2369 (2001)CrossRefGoogle Scholar
  9. 9.
    Esko, J.D., Lindahl, U.: Molecular diversity of heparan sulfate. J. Clin. Invest. 108, 169–173 (2001)CrossRefGoogle Scholar
  10. 10.
    Campa, C., Coslovi, A., Flamigni, A., Rossi, M.: Overview on advances in capillary electrophoresis-mass spectrometry of carbohydrates: a tabulated review. Electrophoresis. 27, 2027–2050 (2006)CrossRefGoogle Scholar
  11. 11.
    Mechref, Y., Novotny, M.V.: Glycomic analysis by capillary electrophoresis–mass spectrometry. Mass Spectrom. Rev. 28, 207–222 (2009)CrossRefGoogle Scholar
  12. 12.
    Albrecht, S., Schols, H.A., van den Heuvel, E.G., Voragen, A.G., Gruppen, H.: CE-LIF-MSn profiling of oligosaccharides in human milk and feces of breast-fed babies. Electrophoresis. 31, 1264–1273 (2010)CrossRefGoogle Scholar
  13. 13.
    Guttman, A.: Capillary electrophoresis in the N-glycosylation analysis of biopharmaceuticals. Trends Anal. Chem. 48, 132–143 (2013)CrossRefGoogle Scholar
  14. 14.
    Bunz, S.-C., Rapp, E., Neusüss, C.: Capillary electrophoresis/mass spectrometry of APTS-labeled glycans for the identification of unknown glycan species in capillary electrophoresis/laser-induced fluorescence systems. Anal. Chem. 85, 10218–10224 (2013)CrossRefGoogle Scholar
  15. 15.
    Reusch, D., Haberger, M., Maier, B., Maier, M., Kloseck, R., Zimmermann, B., Hook, M., Szabo, Z., Tep, S., Wegstein, J.: Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles—part 1: separation-based methods. MAbs. 7, 167–179 (2015)CrossRefGoogle Scholar
  16. 16.
    Clowers, B.H., Dwivedi, P., Steiner, W.E., Hill, H.H., Bendiak, B.: Separation of sodiated isobaric disaccharides and trisaccharides using electrospray ionization-atmospheric pressure ion mobility-time of flight mass spectrometry. J. Am. Soc. Mass Spectrom. 16, 660–669 (2005)CrossRefGoogle Scholar
  17. 17.
    Plasencia, M.D., Isailovic, D., Merenbloom, S.I., Mechref, Y., Clemmer, D.E.: Resolving and assigning N-linked glycan structural isomers from ovalbumin by IMS-MS. J. Am. Soc. Mass Spectrom. 19, 1706–1715 (2008)CrossRefGoogle Scholar
  18. 18.
    Williams, J.P., Grabenauer, M., Holland, R.J., Carpenter, C.J., Wormald, M.R., Giles, K., Harvey, D.J., Bateman, R.H., Scrivens, J.H., Bowers, M.T.: Characterization of simple isomeric oligosaccharides and the rapid separation of glycan mixtures by ion mobility mass spectrometry. Int. J. Mass Spectrom. 298, 119–127 (2010)CrossRefGoogle Scholar
  19. 19.
    Fenn, L.S., McLean, J.A.: Structural resolution of carbohydrate positional and structural isomers based on gas-phase ion mobility-mass spectrometry. Phys. Chem. Chem. Phys. 13, 2196–2205 (2011)CrossRefGoogle Scholar
  20. 20.
    Lee, S., Valentine, S.J., Reilly, J.P., Clemmer, D.E.: Analyzing a mixture of disaccharides by IMS-VUVPD-MS. Int. J. Mass Spectrom. 309, 161–167 (2012)CrossRefGoogle Scholar
  21. 21.
    Li, H., Bendiak, B., Siems, W.F., Gang, D.R., Hill Jr, H.H.: Carbohydrate structure characterization by tandem ion mobility mass spectrometry (IMMS) 2. Anal. Chem. 85, 2760–2769 (2013)CrossRefGoogle Scholar
  22. 22.
    Huang, Y., Dodds, E.D.: Ion mobility studies of carbohydrates as group I adducts: isomer specific collisional cross section dependence on metal ion radius. Anal. Chem. 85, 9728–9735 (2013)CrossRefGoogle Scholar
  23. 23.
    Both, P., Green, A., Gray, C., Šardzík, R., Voglmeir, J., Fontana, C., Austeri, M., Rejzek, M., Richardson, D., Field, R.: Discrimination of epimeric glycans and glycopeptides using IM-MS and its potential for carbohydrate sequencing. Nat. Chem. 6, 65–74 (2014)CrossRefGoogle Scholar
  24. 24.
    Kailemia, M.J., Park, M., Kaplan, D.A., Venot, A., Boons, G.-J., Li, L., Linhardt, R.J., Amster, I.J.: High-field asymmetric-waveform ion mobility spectrometry and electron detachment dissociation of isobaric mixtures of glycosaminoglycans. J. Am. Soc. Mass Spectrom. 25, 258–268 (2014)CrossRefGoogle Scholar
  25. 25.
    Hofmann, J., Hahm, H., Seeberger, P.H., Pagel, K.: Identification of carbohydrate anomers using ion mobility–mass spectrometry. Nature. 526, 241 (2015)CrossRefGoogle Scholar
  26. 26.
    Pu, Y., Ridgeway, M.E., Glaskin, R.S., Park, M.A., Costello, C.E., Lin, C.: Separation and identification of isomeric glycans by selected accumulation-trapped ion mobility spectrometry-electron activated dissociation tandem mass spectrometry. Anal. Chem. 88, 3440–3443 (2016)CrossRefGoogle Scholar
  27. 27.
    Schenauer, M.R., Meissen, J.K., Seo, Y., Ames, J.B., Leary, J.A.: Heparan sulfate separation, sequencing, and isomeric differentiation: ion mobility spectrometry reveals specific iduronic and glucuronic acid-containing hexasaccharides. Anal. Chem. 81, 10179–10185 (2009)CrossRefGoogle Scholar
  28. 28.
    Thurl, S., Henker, J., Siegel, M., Tovar, K., Sawatzki, G.: Detection of four human milk groups with respect to Lewis blood group dependent oligosaccharides. Glycoconj. J. 14, 795–799 (1997)CrossRefGoogle Scholar
  29. 29.
    Grey, C., Edebrink, P., Krook, M., Jacobsson, S.P.: Development of a high performance anion exchange chromatography analysis for mapping of oligosaccharides. J. Chromatogr. B. 877, 1827–1832 (2009)CrossRefGoogle Scholar
  30. 30.
    Rohrer, J.S., Basumallick, L., Hurum, D.C.: Profiling N-linked oligosaccharides from IgG by high-performance anion-exchange chromatography with pulsed amperometric detection. Glycobiology. 26, 582–591 (2016)CrossRefGoogle Scholar
  31. 31.
    Takegawa, Y., Deguchi, K., Keira, T., Ito, H., Nakagawa, H., Nishimura, S.-I.: Separation of isomeric 2-aminopyridine derivatized N-glycans and N-glycopeptides of human serum immunoglobulin G by using a zwitterionic type of hydrophilic-interaction chromatography. J. Chromatogr. A. 1113, 177–181 (2006)CrossRefGoogle Scholar
  32. 32.
    Ahn, J., Bones, J., Yu, Y.Q., Rudd, P.M., Gilar, M.: Separation of 2-aminobenzamide labeled glycans using hydrophilic interaction chromatography columns packed with 1.7 μm sorbent. J. Chromatogr. B. 878, 403–408 (2010)CrossRefGoogle Scholar
  33. 33.
    Zhao, J., Li, S., Li, C., Wu, S.-L., Xu, W., Chen, Y., Shameem, M., Richardson, D., Li, H.: Identification of low abundant isomeric N-glycan structures in biological therapeutics by LC/MS. Anal. Chem. 88, 7049–7059 (2016)CrossRefGoogle Scholar
  34. 34.
    Ritamo, I., Räbinä, J., Natunen, S., Valmu, L.: Nanoscale reversed-phase liquid chromatography–mass spectrometry of permethylated N-glycans. Anal. Bioanal. Chem. 405, 2469–2480 (2013)CrossRefGoogle Scholar
  35. 35.
    Zhou, S., Hu, Y., Mechref, Y.: High-temperature LC-MS/MS of permethylated glycans derived from glycoproteins. Electrophoresis. 37, 1506–1513 (2016)CrossRefGoogle Scholar
  36. 36.
    Vreeker, G.C., Wuhrer, M.: Reversed-phase separation methods for glycan analysis. Anal. Bioanal. Chem. 409, 359–378 (2017)CrossRefGoogle Scholar
  37. 37.
    Kawasaki, N., Ohta, M., Hyuga, S., Hashimoto, O., Hayakawa, T.: Analysis of carbohydrate heterogeneity in a glycoprotein using liquid chromatography/mass spectrometry and liquid chromatography with tandem mass spectrometry. Anal. Biochem. 269, 297–303 (1999)CrossRefGoogle Scholar
  38. 38.
    Karlsson, N.G., Schulz, B.L., Packer, N.H.: Structural determination of neutral O-linked oligosaccharide alditols by negative ion LC-electrospray-MSn. J. Am. Soc. Mass Spectrom. 15, 659–672 (2004)CrossRefGoogle Scholar
  39. 39.
    Costello, C.E., Contado-Miller, J.M., Cipollo, J.F.: A glycomics platform for the analysis of permethylated oligosaccharide alditols. J. Am. Soc. Mass Spectrom. 18, 1799–1812 (2007)CrossRefGoogle Scholar
  40. 40.
    Pabst, M., Bondili, J.S., Stadlmann, J., Mach, L., Altmann, F.: Mass + retention time = structure: a strategy for the analysis of N-Glycans by carbon LC-ESI-MS and its application to fibrin N-Glycans. Anal. Chem. 79, 5051–5057 (2007)CrossRefGoogle Scholar
  41. 41.
    Pabst, M., Grass, J., Toegel, S., Liebminger, E., Strasser, R., Altmann, F.: Isomeric analysis of oligomannosidic N-glycans and their dolichol-linked precursors. Glycobiology. 22, 389–399 (2011)CrossRefGoogle Scholar
  42. 42.
    Ruhaak, L.R., Miyamoto, S., Kelly, K., Lebrilla, C.B.: N-Glycan profiling of dried blood spots. Anal. Chem. 84, 396–402 (2012)CrossRefGoogle Scholar
  43. 43.
    Dong, X., Zhou, S., Mechref, Y.: LC-MS/MS analysis of permethylated free oligosaccharides and N-glycans derived from human, bovine, and goat milk samples. Electrophoresis. 37, 1532–1548 (2016)CrossRefGoogle Scholar
  44. 44.
    Zhou, S., Huang, Y., Dong, X., Peng, W., Veillon, L., Kitagawa, D.A., Aquino, A.J., Mechref, Y.: Isomeric separation of permethylated glycans by porous graphitic carbon (PGC)-LC-MS/MS at high temperatures. Anal. Chem. 89, 6590–6597 (2017)CrossRefGoogle Scholar
  45. 45.
    Veillon, L., Huang, Y., Peng, W., Dong, X., Cho, B.G., Mechref, Y.: Characterization of isomeric glycan structures by LC-MS/MS. Electrophoresis. 38(17), 2100–2114 (2017)CrossRefGoogle Scholar
  46. 46.
    Zhou, S., Dong, X., Veillon, L., Huang, Y., Mechref, Y.: LC-MS/MS analysis of permethylated N-glycans facilitating isomeric characterization. Anal. Bioanal. Chem. 409, 453–466 (2017)CrossRefGoogle Scholar
  47. 47.
    Delaney, J., Vouros, P.: Liquid chromatography ion trap mass spectrometric analysis of oligosaccharides using permethylated derivatives. Rapid Commun. Mass Spectrom. 15, 325–334 (2001)CrossRefGoogle Scholar
  48. 48.
    Budnik, B.A., Haselmann, K.F., Elkin, Y.N., Gorbach, V.I., Zubarev, R.A.: Applications of electron-ion dissociation reactions for analysis of polycationic chitooligosaccharides in Fourier transform mass spectrometry. Anal. Chem. 75, 5994–6001 (2003)CrossRefGoogle Scholar
  49. 49.
    Adamson, J.T., Hakansson, K.: Electron capture dissociation of oligosaccharides ionized with alkali, alkaline earth, and transition metals. Anal. Chem. 79, 2901–2910 (2007)CrossRefGoogle Scholar
  50. 50.
    Zhao, C., Xie, B., Chan, S.Y., Costello, C.E., O'Connor, P.B.: Collisionally activated dissociation and electron capture dissociation provide complementary structural information for branched permethylated oligosaccharides. J. Am. Soc. Mass Spectrom. 19, 138–150 (2008)CrossRefGoogle Scholar
  51. 51.
    Liu, H., Håkansson, K.: Electron capture dissociation of divalent metal-adducted sulfated oligosaccharides. Int. J. Mass Spectrom. 305, 170–177 (2011)CrossRefGoogle Scholar
  52. 52.
    Han, L., Costello, C.E.: Electron transfer dissociation of milk oligosaccharides. J. Am. Soc. Mass Spectrom. 22, 997–1013 (2011)CrossRefGoogle Scholar
  53. 53.
    Yu, X., Huang, Y., Lin, C., Costello, C.E.: Energy-dependent electron activated dissociation of metal-adducted permethylated oligosaccharides. Anal. Chem. 84, 7487–7494 (2012)CrossRefGoogle Scholar
  54. 54.
    Huang, Y., Pu, Y., Yu, X., Costello, C., Lin, C.: Mechanistic study on electron capture dissociation of the oligosaccharide-Mg2+ complex. J. Am. Soc. Mass Spectrom. 25, 1451–1460 (2014)CrossRefGoogle Scholar
  55. 55.
    Yu, X., Jiang, Y., Chen, Y., Huang, Y., Costello, C.E., Lin, C.: Detailed glycan structural characterization by electronic excitation dissociation. Anal. Chem. 85, 10017–10021 (2013)CrossRefGoogle Scholar
  56. 56.
    Tang, Y., Pu, Y., Gao, J., Hong, P., Costello, C.E., Lin, C.: De novo glycan sequencing by electronic excitation dissociation and fixed-charge derivatization. Anal. Chem., in press. (2018).
  57. 57.
    Nielsen, M.L., Budnik, B.A., Haselmann, K.F., Olsen, J.V., Zubarev, R.A.: Intramolecular hydrogen atom transfer in hydrogen-deficient polypeptide radical cations. Chem. Phys. Lett. 330, 558–562 (2000)CrossRefGoogle Scholar
  58. 58.
    Fung, Y.E., Adams, C.M., Zubarev, R.A.: Electron ionization dissociation of singly and multiply charged peptides. J. Am. Chem. Soc. 131, 9977–9985 (2009)CrossRefGoogle Scholar
  59. 59.
    Cody, R., Freiser, B.: Electron impact excitation of ions from organics: an alternative to collision induced dissociation. Anal. Chem. 51, 547–551 (1979)CrossRefGoogle Scholar
  60. 60.
    Hong, P., Sun, H., Sha, L., Pu, Y., Khatri, K., Yu, X., Tang, Y., Lin, C.: GlycoDeNovo—an efficient algorithm for accurate de novo glycan topology reconstruction from tandem mass spectra. J. Am. Soc. Mass Spectrom. 28, 2288–2301 (2017)CrossRefGoogle Scholar
  61. 61.
    Ciucanu, I., Kerek, F.: A simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res. 131, 209–217 (1984)CrossRefGoogle Scholar
  62. 62.
    Ciucanu, I., Costello, C.E.: Elimination of oxidative degradation during the per-O-methylation of carbohydrates. J. Am. Chem. Soc. 125, 16213–16219 (2003)CrossRefGoogle Scholar
  63. 63.
    McNeil, M.: Elimination of internal glycosyl residues during chemical ionization-mass spectrometry of per-O-alkylated oligosaccharide-alditols. Carbohydr. Res. 123, 31–40 (1983)CrossRefGoogle Scholar
  64. 64.
    Brüll, L., Heerma, W., Thomas-Oates, J., Haverkamp, J., Kovácik, V., Kovác, P.: Loss of internal 1 → 6 substituted monosaccharide residues from underivatized and per-O-methylated trisaccharides. J. Am. Soc. Mass Spectrom. 8, 43–49 (1997)CrossRefGoogle Scholar
  65. 65.
    Brüll, L., Kovácik, V., Thomas-Oates, J., Heerma, W., Haverkamp, J.: Sodium-cationized oligosaccharides do not appear to undergo ‘internal residue loss’ rearrangement processes on tandem mass spectrometry. Rapid Commun. Mass Spectrom. 12, 1520–1532 (1998)CrossRefGoogle Scholar
  66. 66.
    Harvey, D.J., Mattu, T.S., Wormald, M.R., Royle, L., Dwek, R.A., Rudd, P.M.: “Internal residue loss”: rearrangements occurring during the fragmentation of carbohydrates derivatized at the reducing terminus. Anal. Chem. 74, 734–740 (2002)CrossRefGoogle Scholar
  67. 67.
    Franz, A.H., Lebrilla, C.B.: Evidence for long-range glycosyl transfer reactions in the gas phase. J. Am. Soc. Mass Spectrom. 13, 325–337 (2002)CrossRefGoogle Scholar
  68. 68.
    Wuhrer, M., Koeleman, C.A., Hokke, C.H., Deelder, A.M.: Mass spectrometry of proton adducts of fucosylated N-glycans: fucose transfer between antennae gives rise to misleading fragments. Rapid Commun. Mass Spectrom. 20, 1747–1754 (2006)CrossRefGoogle Scholar
  69. 69.
    Wuhrer, M., Deelder, A.M., van der Burgt, Y.E.: Mass spectrometric glycan rearrangements. Mass Spectrom. Rev. 30, 664–680 (2011)CrossRefGoogle Scholar
  70. 70.
    Alley Jr., W.R., Madera, M., Mechref, Y., Novotny, M.V.: Chip-based reversed-phase liquid chromatography−mass spectrometry of permethylated N-linked glycans: a potential methodology for cancer-biomarker discovery. Anal. Chem. 82, 5095–5106 (2010)CrossRefGoogle Scholar
  71. 71.
    Zhou, S., Hu, Y., Veillon, L., Snovida, S.I., Rogers, J.C., Saba, J., Mechref, Y.: Quantitative LC–MS/MS glycomic analysis of biological samples using aminoxyTMT. Anal. Chem. 88, 7515–7522 (2016)CrossRefGoogle Scholar
  72. 72.
    Huang, Y., Pu, Y., Yu, X., Costello, C.E., Lin, C.: Mechanistic study on electronic excitation dissociation of the cellobiose-Na+ complex. J. Am. Soc. Mass Spectrom. 27, 319–328 (2016)CrossRefGoogle Scholar
  73. 73.
    Domon, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 5, 397–409 (1988)CrossRefGoogle Scholar
  74. 74.
    Hioe, J., Zipse, H.: Radical stability and its role in synthesis and catalysis. Org. Biomol. Chem. 8, 3609–3617 (2010)CrossRefGoogle Scholar
  75. 75.
    Desai, N., Thomas, D.A., Lee, J., Gao, J., Beauchamp, J.: Eradicating mass spectrometric glycan rearrangement by utilizing free radicals. Chem. Sci. 7, 5390–5397 (2016)CrossRefGoogle Scholar
  76. 76.
    Zekavat, B., Solouki, T.: Chemometric data analysis for deconvolution of overlapped ion mobility profiles. J. Am. Soc. Mass Spectrom. 23, 1873–1884 (2012)CrossRefGoogle Scholar
  77. 77.
    Brantley, M., Zekavat, B., Harper, B., Mason, R., Solouki, T.: Automated deconvolution of overlapped ion mobility profiles. J. Am. Soc. Mass Spectrom. 25, 1810–1819 (2014)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.Department of ChemistryBoston UniversityBostonUSA
  2. 2.Center for Biomedical Mass SpectrometryBoston University School of MedicineBostonUSA

Personalised recommendations