Skip to main content

Advertisement

Log in

IAPP/amylin and β-cell failure: implication of the risk factors of type 2 diabetes

  • Review Article
  • Published:
Diabetology International Aims and scope Submit manuscript

A Correction to this article was published on 24 July 2018

This article has been updated

Abstract

In type 2 diabetes (T2D), the most significant pathological change in pancreatic islets is amyloid deposits, of which a major component is islet amyloid polypeptide (IAPP), also called amylin. IAPP is expressed in β-cells and co-secreted with insulin. Together with the inhibitory effects of synthetic human IAPP (hIAPP) on insulin secretion, our studies, using hIAPP transgenic mice, in which glucose-stimulated insulin secretion was moderately reduced without amyloid deposit, and hIAPP gene-transfected β-cell lines, in which insulin secretion was markedly impaired without amyloid, predicted that soluble hIAPP-related molecules would exert cytotoxicity on β-cells. Human IAPP is one of the most aggregation-prone peptides that interact with cell membranes. While it is widely reported that soluble hIAPP oligomers promote cytotoxicity, this is still a hypothesis since the mechanisms are not yet fully defined. Several hIAPP transgenic mouse models did not develop diabetes; however, in models with backgrounds characterized for diabetic phenotypes, β-cell function and glucose tolerance did worsen, compared to those in non-transgenic models with similar backgrounds. Together with these findings, many studies on metabolic and molecular disorders induced by risk factors of T2D suggest that in T2D subjects, toxic IAPP oligomers accumulate in β-cells, impair their function, and reduce mass through disruption of cell membranes, resulting in β-cell failure. IAPP might be central to β-cell failure in T2D. Anti-amyloid aggregation therapeutics will be developed to create treatments with more durable and beneficial effects on β-cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Cited from Nish et al. [16]

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 24 July 2018

    In the original publication of the article, corresponding author’s email address was published incorrectly. The correct email address is azumaka@yahoo.co.jp.

References

  1. UK Prospective Diabetes Study (UKPDS) Group. UK prospective diabetes study 16: overview of 6 years’ therapy of type II diabetes: a progressive disease. Diabetes. 1995;44:1249–58.

    Article  Google Scholar 

  2. Levy J, Atkinson AB, Bell PM, et al. Beta-cell deterioration determines the onset and rate of progression of secondary dietary failure in type 2 diabetes mellitus: the 10-year follow-up of the Belfast Diet Study. Diabet Med. 1998;15:290–6.

    Article  PubMed  CAS  Google Scholar 

  3. Turner RC, Cull CA, Frighi V, et al. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). JAMA. 1999;281:2005–12.

    Article  PubMed  CAS  Google Scholar 

  4. Kahn SE, Haffner SM, Heise ME, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355:2427–43.

    Article  PubMed  CAS  Google Scholar 

  5. Halban PA, Polonsky KS, Bowden DW, Hawkins MA, Ling C, Mather KJ, Powers AC, Rhodes CJ, Sussel L, Weir GC. β-Cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. J Clin Endocrinol Metab. 2014;99(6):1983–92. https://doi.org/10.1210/jc.2014-1425.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Opie E. The relation of diabetes mellitus to lesion of the pancreas. Hyaline degeneration of the islands of Langerhans. J Exp Med. 1901;5:527–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Clark A, Saad MP, Nezzer T, Uren C, Knowler WC, Bennelt PH, et al. Islet amyloid polypeptide in diabetic and non-diabetic Pima Indians. Diabetologia. 1990;33:285–9.

    Article  PubMed  CAS  Google Scholar 

  8. Westermark P, Wernstedt C, Wilander E, Hayden DW, O’Brien TD, Johnson KH. Amyloid fibrils in human insulinoma and islets Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci USA. 1987;84:3881–5.

    Article  PubMed  CAS  Google Scholar 

  9. Cooper GJS, Willis AC, Clark A, Turner RC, Sim RB, Reid KBM. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci USA. 1987;84:8628–32.

    Article  PubMed  CAS  Google Scholar 

  10. Ohsawa H, Kanatsuka A, Mizuno Y, Tokuyama Y, Takada K, Mikata A, Makino H, Yoshida S. Islet amyloid polypeptide-derived amyloid deposition increases along with the duration of type 2 diabetes mellitus. Diabetes Res Clin Pract. 1992;15:17–22.

    Article  PubMed  CAS  Google Scholar 

  11. Kamata K, Mizukami H, Inaba W, Tsuboi K, Tateishi Y, Yoshida T, Yagihashi S. Islet amyloid with macrophage migration correlates with augmented β-cell deficits in type 2 diabetic patients. Amyloid. 2014;21:191–201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Tycko R. Amyloid polymorphism: structural basis and neurobiological relevance. Cell Neuron. 2015;86:632–45.

    Article  PubMed  CAS  Google Scholar 

  13. Mosselman S, Hoppener JWM, Lips CJM, Jansz HS. The complete islet amyloid polypeptide precursor is encoded by two exons. FEBS Lett. 1989;247:154–8.

    Article  PubMed  CAS  Google Scholar 

  14. Sanke T, Bell GI, Sample C, Rubenstein AH, Steiner DF. An islet amyloid peptide is derived from an 89-amino acid precursor by proteolytic processing. J Biol Chem. 1988;263:17243–6.

    PubMed  CAS  Google Scholar 

  15. Nishi M, Sanke T, Nagamatsu S, Bell GI, Steiner DF. Islet amyloid polypeptide A new β cell secretory product related to islet amyloid deposits. J Biol Chem. 1990;265:4173–6.

    PubMed  CAS  Google Scholar 

  16. Nishi M, Chan SJ, Nagamatsu S, Bell GI, Steiner DF. Conservation of the sequence of islet amyloid polypeptide in five mammals is consistent with its putative role as an islet hormone. Proc Natl Acad Sci USA. 1989;86:5738–42.

    Article  PubMed  CAS  Google Scholar 

  17. Betsholtz C, Christmanson L, EngstromU Rorsman F, Jordan K, O’Brien TD, et al. Structure of cat islet amyloid polypeptide and identification of amino acid residues of potential significance for islet amyloid formation. Diabetes. 1990;39:118–22.

    Article  PubMed  CAS  Google Scholar 

  18. Kanatsuka A, Makino H, Ohsawa H, Tokuyama Y, Yamaguchi Y, Yoshida H, Adachi M. Secretion of islet amyloid polypeptide in response to glucose. FEBS Lett. 1989;259:199–201.

    Article  PubMed  CAS  Google Scholar 

  19. Ogawa A, Harris V, McCorkle SK, Unger RH, Luskey KL. Amylin secretion from the rat pancreas and its selective loss after streptozotocin treatment. J Clin Invest. 1990;85:973–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Badman MK, Shenen KI, Jermany JL, Dochewrty K, Clark A. Processing of pro-islet amyloid polypeptide (proIAPP) by the prohormone convertase PC2. FEBS Lett. 1996;378:227–31.

    Article  PubMed  CAS  Google Scholar 

  21. Westermark P, Li ZC, Westermark GT, Leckstrom A, Steiner DF. Effect of beta cell granule components on human islet amyloid polypeptide fibril formation. FEBS Lett. 1996;379:203–6.

    Article  PubMed  CAS  Google Scholar 

  22. Miyazaki J, Araki K, Yamamoto E, Ikegami H, Asano T, Shibasaki Y, Oka Y, Yamamura K. Establishment of a pancreatic B-cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology. 1990;127:126–32.

    Article  PubMed  CAS  Google Scholar 

  23. Kanatsuka A, Makino H, Yamaguchi T, Ohsawa H, Tokuyama Y, Saitoh T, Yamamura K, Miyazaki J, Yoshida S. Islet amyloid polypeptide/amylin in pancreatic β-cell line derived from transgenic mouse insulinoma. Diabetes. 1992;41:1409–14.

    Article  PubMed  CAS  Google Scholar 

  24. Itoh N, Okamoto H. Translational control of proinsulin synthesis by glucose. Nature (Lond). 1980;283:100–2.

    Article  CAS  Google Scholar 

  25. Welsh M, Nielsen DA, MacKrell AJ, Steiner DF. Control of insulin gene expression in pancreatic B-cells and in an insulin-producing cell line, RIN-5F cells. J Biol Chem. 1985;260:13590–4.

    PubMed  CAS  Google Scholar 

  26. Hammonds P, Schofield PN, Stephan JH, Ashcroft SJH. Glucose regulates preproinsulin messenger RNA levels in a clonal cell line of simian virus 40-transformed B cells. FEBS Lett. 1987;213:149–54.

    Article  PubMed  CAS  Google Scholar 

  27. Tokuyama Y, Kanatsuka A, Ohsawa H, Yamaguchi T, Makino H, Yoshida S, Nagase H, Inoue S. Hypersecretion of islet amyloid polypeptide from pancreatic islets ventromedial hypothalamic-lesioned rats and obese Zucker rats. Endocrinology. 1991;128:2739–44.

    Article  PubMed  CAS  Google Scholar 

  28. Tokuyama Y, Kanatsuka A, Yamaguchi T, Ohsawa H, Makino H, Nishimura M, Yoshida S. Islet amyloid polypeptide/amylin in pancreata increase in genetically obese and diabetic mice. Horm Metab Res. 1993;25:289–91.

    Article  PubMed  CAS  Google Scholar 

  29. Takada K, Kanatsuka A, Tokuyama Y, Yagui K, Nishimura, Saito Y, Makino H. Islet amyloid polypeptide/amylin contents in pancreas change with increasing age in genetically obese and diabetic mice. Diabetes Res Clin Pract. 1996;33:153–8.

    Article  PubMed  CAS  Google Scholar 

  30. Westermark P, Andersson A, Westermark GT. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev. 2011;91:795–826.

    Article  PubMed  CAS  Google Scholar 

  31. Ohsawa H, Kanatsuka A, Yamaguchi T, Makino H, Yoshida S. Islet amyloid polypeptide inhibits glucose-stimulated insulin secretion from isolated rat pancreatic islets. Biochem Biophys Res Commun. 1989;160:961–7.

    Article  PubMed  CAS  Google Scholar 

  32. Degano P, Silvestre RA, Salas M, Peiro E. Amylin inhibits glucose-induced insulin secretion in a dose-dependent manner. Study in the perfused rat pancreas. Regul Pept. 1993;43:91–6.

    Article  PubMed  CAS  Google Scholar 

  33. Sandler S, Stridsberg M. Chronic exposure of cultured rat pancreatic islets to elevated concentrations of islet amyloid polypeptide (IAPP) causes a decrease in islet DNA content and medium insulin accumulation. Regul Pept. 1994;3:103–9.

    Article  Google Scholar 

  34. Broderick CL, Brooke CS, DiMarchi RD, Gold G. Human and rat amylin have no effect on insulin secretion in isolated rat pancreatic islets. Biochem Biophys Res Commun. 1991;177:932–8.

    Article  PubMed  CAS  Google Scholar 

  35. O’Brien TD, Westermark P, Johnson KH. Islet amyloid polypeptide (IAPP) does not inhibit glucose-stimulated insulin secretion from isolated perfused rat pancreas. Biochem Biophys Res Commun. 1990;170:1223–8.

    Article  PubMed  Google Scholar 

  36. Brethorton-Watt D, Gilbey SG, Ghatei MA, Beacham J, Macrae AD. Very high concentrations of islet amyloid polypeptide are necessary to alter the insulin response to intravenous glucose in man. J Clin Endocrinol Metab. 1992;74:1032–5.

    Google Scholar 

  37. Bram Y, Frydman-Maram A, Yanai I, Gilead S, Shaltiel-Karyo R, Amdulsky N, Gazit E. Apoptosis induced by islet amyloid polypeptide soluble oligomers is neutralized by diabetes-associated specific antibodies. Sci Rep. 2014;4:4267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Matveyenko AV, Butler PC. Islet amyloid polypeptide (IAPP) transgenic rodents as models for type 2 diabetes. ILAR J. 2006;47:225–33.

    Article  PubMed  CAS  Google Scholar 

  39. Fox N, Schrementi J, Nishi M, Ohgi S, Chan SJ, Heisserman JA, Westermark GT, Leckstrom A, Westermark P, Steiner DF. Human islet amyloid polypeptide transgenic mice as a model of non-insulin-dependent diabetes mellitus (NIDDM). FEBS Lett. 1993;323:40–4.

    Article  PubMed  CAS  Google Scholar 

  40. Koning EJP, Hoppener JWM, Verbeek JS, Oosterwijk C, Hulst KL, Baker CA, Lips CJM, Morris JF, Clark A. Human islet amyloid polypeptide accumulates at similar sites in islets of transgenic mice and humans. Diabetes. 1994;43:640–4.

    Article  PubMed  Google Scholar 

  41. Yagui K, Yamaguchi T, Kanatsuka A, Shimada F, Huang CI, Tokuyama Y, Ohsawa H, Tamamura K, Miyazaki K, Mikata A, Yoshida S, Makino H. Formation of islet amyloid fibrils in beta-secretory granules of transgenic mice expressing human islet amyloid polypeptide/amylin. Eur J Endocrinol. 1995;132:487–96.

    Article  PubMed  CAS  Google Scholar 

  42. Tokuyama T, Yagui K, Yamaguchi T, Huang CI, Kuramoto N, Shimada F, Miyazaki J, Horie H, Saito Y, Makino H, Kanatsuka A. Expression of human islet amyloid polypeptide/amylin impairs insulin secretion in mouse pancreatic β cells. Metabolism. 1997;46:1044–51.

    Article  PubMed  CAS  Google Scholar 

  43. Janson J, Soeller WC, Roche PC, Nelsoin RT, Torchia AJ, Kreuter DK, Butler PC. Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proc Natl Acad Sci USA. 1996;93:7283–8.

    Article  PubMed  CAS  Google Scholar 

  44. Snowdon DA. Aging and Alzheimer’s disease: lessons from the Nun study. Gerontology. 1997;37:150–6.

    CAS  Google Scholar 

  45. Dahlgrent KN, Manelli AM, Stine MW, Baker LK, Krafft GA, LadU MJ. Oligomeric and fibrillary species of amyloid-β peptides differentially affect neuronal viability. J Biol Chem. 2002;277:32046–53.

    Article  CAS  Google Scholar 

  46. Glabe CG. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging. 2006;27:570–5.

    Article  PubMed  CAS  Google Scholar 

  47. Kayed R, Head E, Thompson JL, Mclntire TM, Milton SC, Cotman CW, Glabe CG. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 2003;300:486–9.

    Article  PubMed  CAS  Google Scholar 

  48. Kayed R, Bernhagen J, Greenfield N, Sweimeh K, Brunner H, Voelter W, Kaspumiotu A. Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in vitro. J Mol Biol. 1999;287:781–96.

    Article  PubMed  CAS  Google Scholar 

  49. Knight JD, Miranker AD. Phospholipid catalysis of diabetic amyloid assembly. J Mol Biol. 2004;341:1175–87.

    Article  PubMed  CAS  Google Scholar 

  50. Willamson JA, Miranker AD. Direct detection of transient α-helical states in islet amyloid polypeptide. Protein Sci. 2007;16:110–7.

    Article  CAS  Google Scholar 

  51. Brender J, Lee EL, Cavitt MA, Gafni A, Steel DG, Ramamoorthy A. Amyloid fiber formation and membrane disruption are separate processes localized in two distinct regions of IAPP, the Type-2-diabetes-related peptide. J Am Chem Soc. 2008;21:6424–9.

    Article  CAS  Google Scholar 

  52. Apostolidou M, Jayasinghe SA, Langen R. Structure of & α-helical membrane-bound human islet amyloid polypeptide and its implications for membrane-mediated misfolding. J Biol Chem. 2008;283:17205–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Patil AM, Xu S, Sheftic SR, Alexanderescu AT. Dynamic & α-helix structure of micelle-bound human amylin. J Biol Chem. 2009;284:11982–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Pannuzzo M, Raudino A, Milardi D, Rosa CL, Kattunen M. α-Helical structure drive early stages of self-assembly of amyloidogenic amyloid polypeptide aggregate formation in membranes. Sci Rep. 2013;3:2781.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li X, Wan M, Gao L, Fang W. Mechanism of inhibition of human islet amyloid polypeptide-induced membrane damage by small organic fluorogen. Sci Rep. 2016;6:21614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zraika S, Hull RL, Verchere CB, Clark A, Potter KJ, Fraser PE, Raleigh DP, Kahn SE. Toxic oligomers and islet beta cell death: guilty by association or convicted by circumstantial evidence? Diabetologia. 2010;53:1046–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Cao P, Marek P, Noor H, Patsalo V, Tu L-H, Wang H, Abedini A, Raleigh DP. Islet amyloid: from fundamental biophysics to mechanisms of cytotoxicity. FEBS Lett. 2013;587:1106–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Haataja L, Gurlo T, Huang CJ, Peter C, Butler PC. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocrinol Rev. 2008;29:303–16.

    Article  CAS  Google Scholar 

  59. Pithadia A, Brender JR, Fierke CA, Ramamoorthy A. Inhibition of IAPP aggregation and toxicity by natural products and derivatives. J Diabetes Res 2016;2016:12. https://doi.org/10.1155/2016/2046327.

    Article  CAS  Google Scholar 

  60. Pilkington EH, Gurzov EN, Kakinen A, Litwak SA, Stanley WJ, Davis TP, Ke PC. Pancreatic β-cell membrane fluidity and toxicity induced by human islet amyloid species. Sci Rep. 2016;6:21274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Schlamadinger DE, Miranker AD. Fiber-dependent and -independent toxicity of islet amyloid polypeptide. Biophys J. 2014;107:2559–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Liu C, Zhao M, Jiang L, Cheng P-N, Park J, Sawaya MR, Pensalfini A, Gou W, Berk AJ, Glabe CG, Nowic J, Eiseberg D. Out-of-register β-sheets suggest a pathway to toxic amyloid aggregates. Proc Natl Acad Sci USA. 2012;109:20913–8.

    Article  PubMed  Google Scholar 

  63. Gurio T, Ryazantsev S, Huang C-J, Yeh MW, Reber HA, Hines OJ, O’Brien TD, Glabe CG, Butler PC. Evidence for proteotoxicity in β-cells in type 2 diabetes. Toxic islet amyloid polypeptide oligomers form intracellularly in the secretory pathway. Am J Pathol. 2010;176:861–9.

    Article  CAS  Google Scholar 

  64. Casas S, Gomis R, Gribble FM, Altirriba J, Knuutila S, Novials A. Impairment of the ubiquitin–proteasome pathway is a downstream endoplasmic reticulum stress response induced by extracellular human islet polypeptide and contributes to pancreatic β-cell apoptosis. Diabetes. 2007;56:2284–94.

    Article  PubMed  CAS  Google Scholar 

  65. Morita S, Sakagashira S, Shimajin Y, Eberhardt N, Kondo T, Kondo T, Sanke T. Autophagy protects against human islet amyloid polypeptide-associated apoptosis. J Diabetes Invest. 2011;2:48–55.

    Article  CAS  Google Scholar 

  66. Masters SL, Dunne A, Subramanian SL, Hull RL, Tannanhill GM, et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol. 2010;11:897–904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Couce M, Kane LA, O’Brien TD, Charlesworth J, Soeller W, McNeish J, Kreutter D, Roche P, Bulter PC. Treatment with growth hormone and dexamethasone in mice transgenic for human islet amyloid polypeptide causes islet amyloidosis and β-cell dysfunction. Diabetes. 1996;45:1094–101.

    Article  PubMed  CAS  Google Scholar 

  68. Lindstroem P. The physiology of obese-hyperglycemic mice (ob/ob mice). Sci World J. 2007;7:666–85.

    Article  CAS  Google Scholar 

  69. Hoppener JWM, Oosterwijk C, Nieuwenhuis MG, Posthuma G, Thijssen JHH, Vroom TM, Ahren B, Lips CGM. Extensive islet amyloid formation is induced by development of type II diabetes mellitus and contributes to its progression: pathogenesis of diabetes in a mouse model. Diabetologia. 1999;42:427–34.

    Article  PubMed  CAS  Google Scholar 

  70. Soeller WC, Janson J, Hart SE, Parker JC, Carty MD, Stevenson RW, Kreutter DK, Butler PC. Islet amyloid-associated diabetes in obese Avy/a mice expressing human islet amyloid polypeptide. Diabetes. 1998;47:743–50.

    Article  PubMed  CAS  Google Scholar 

  71. Butler AE, Janson J, Soeler WC, Butler PC. Increased & β-cell apoptosis prevents adaptive increase in β-cell mass in mouse model of type 2 diabetes. Evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes. 2003;52:2304–14.

    Article  PubMed  CAS  Google Scholar 

  72. Shigihara N, Fukunaka A, Hara A, Komiya K, Honda A, Uchida T, Abe H, Toyofuku Y, Tamaki M, Ogihara T, Miyatsuka T, Hiddinga H, Sakagashira S, Koike M, Uchiyama Y, Yoshimori T, Eberhaldt NL, Fujitani Y, Watada H. Human IAPP-induced pancreatic β cell toxicity and its regulation by autophagy. J Clin Invest. 2014;124:3634–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Wijesekara N, Kaur A, Westwell-Roper C, Nackiewiecz D, Soukhatcheva G, Hayden MR, Verchere CB. ABCA1 deficiency and cellular cholesterol accumulation increases islet amyloidogenesis in mice. Diabetologia. 2016;59:1242–6.

    Article  PubMed  CAS  Google Scholar 

  74. Papa FR. Endoplasmic reticulum stress, pancreatic β-cell degeneration, and diabetes. Cold Spring Harb Perspect Med. 2012;2:a007666.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. McCracken AA, Brodsky JL. Evolving questions and paradigm shifts in endoplasmic-reticulum-associated degradation (ERAD). BioEssays. 2003;25:868.

    Article  PubMed  CAS  Google Scholar 

  76. Yorimitsu T, Klionsky DJ. Eating the endoplasmic reticulum: quality control by autophagy. Trends Cell Biol. 2007;17:279–85.

    Article  PubMed  CAS  Google Scholar 

  77. Padrick SB, MiraNKER AD. Islet amyloid: phase partitioning and secondary nucleation are central mechanism of fibrillogenesis. Biochemistry. 2002;41:4694–703.

    Article  PubMed  CAS  Google Scholar 

  78. Hutton CG. The insulin secretory granule. Diabetologia. 1989;32:271–81.

    Article  PubMed  CAS  Google Scholar 

  79. Jha S, et al. pH dependence of amylin fibrillization. Biochemistry. 2014;53:300–10.

    Article  PubMed  CAS  Google Scholar 

  80. Nedumpully-Govidan P, Ding F. Inhibition of IAPP aggregation by insulin depends on the insulin oligomeric state regulated by zinc ion concentration. Sci Rep. 2015;5:8240.

    Article  CAS  Google Scholar 

  81. Isaksson B, Wang F, Permert J, Olsson M, Furin B, Herrington MK. Chronically administered islet amyloid polypeptide in rat serves as an adiposity inhibitor and energy homeostasis. Pancreatology. 2005;5:29–36.

    Article  PubMed  CAS  Google Scholar 

  82. Petretto E, Liu ET, Aitman TJ. A gene harvest revealing the archeology and complexity of human diseases. Nat Genet. 2007;39:1299–301.

    Article  PubMed  CAS  Google Scholar 

  83. Sanghera DK, Blackett PR. Type 2 diabetes genetics: beyond GWAS. J Diabetes Metab. 2012;3:1–12.

    Article  CAS  Google Scholar 

  84. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ford ES, Li C, Sattar N. Metabolic syndrome and incident diabetes: current state of the evidence. Diabetes Care. 2008;61:1898–904.

    Article  Google Scholar 

  86. Kruit JK, Brunham LR, Verchere CB, Hayden MR. HDL and LDL cholesterol significantly influence beta-cell function in type 2 diabetes mellitus. Curr Opin Lipidol. 2010;21:178–85.

    Article  PubMed  CAS  Google Scholar 

  87. Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H. Glucose toxicity in β-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes. 2003;52:581–7.

    Article  PubMed  CAS  Google Scholar 

  88. Johnson KH, O’Brien TD, Jordan K, Westermark P. Impaired glucose tolerance is associated with increased islet amyloid polypeptide (IAPP) immunoreactivity in pancreatic beta cells. Am J Pathol. 1989;135:245–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Enoki S, Mitsukawa T, Takemura J, Nakazato M, Aburaya J, Toshomori H. Plasma islet amyloid polypeptide levels in obesity, impaired glucose tolerance and non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract. 1992;15:97–102.

    Article  PubMed  CAS  Google Scholar 

  90. Frailing TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–94.

    Article  CAS  Google Scholar 

  91. Zeggin E, Weedon MN, Lindgren CM, Frailing TM, Elliott KS, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316:1336–41.

    Article  CAS  Google Scholar 

  92. Barrett TG, Bundey SE. Wolfram (DIDMOAD) syndrome. J Med Genet. 1997;34:838–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Takeda K, Inoue H, Tanizawa Y, Matsuzaki Y, Oba J, Watanabew Y, Shinoda K, Oka Y. WFS1 (Wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neural expression in rat brain. Hum Mol Genet. 2001;10:477–84.

    Article  PubMed  CAS  Google Scholar 

  94. Hofman S, Philbrook C, Gerbitz K-D, Bauer MF. Wolfram syndrome: structural and functional analyses of mutant and wild-type wolframin, the WFS1 gene product. Hum Mol Genet. 2003;12:2003–12.

    Article  CAS  Google Scholar 

  95. Fonseka SG, Fukuma M, Lipson KL, Nguyen LX, Allen JR, Oka Y. WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the ER in pancreatic β-cells. J Biol Chem. 2005;280:39609–15.

    Article  CAS  Google Scholar 

  96. Sandhu MS, Weedon MN, Fawsett KA, et al. Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet. 2007;39:951–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Florez JC, Jablonski KA, MacAteer J, Sandhu MS, Warenham NJ, Barroso I, Franks PW, Altshuler D, Knowler WC. for the Diabetes Prevention Program Research Group. Testing of diabetes-associated WFS1 polymorphisms in the Diabetes Prevention Program. Diabetologia. 2008;51:451–7.

    Article  PubMed  CAS  Google Scholar 

  98. Cheurfa N, Brenner GM, Reis AF, Dubois-Laforgue D, Roussel R, Tichet J, Lantieri O, Balkau B, Fumeron F, Timsit J, Marre M, Velho G. Decreased insulin secretion and increased risk of type 2 diabetes associated with allelic variations of the WFS1 gene: the Data from Epidemiological Study on the insulin Resistance Syndrome (DESIR) prospective study. Diabetologia. 2011;54:554–62.

    Article  PubMed  CAS  Google Scholar 

  99. Powers ET, Morimot RI, Dillin A, Kelly JW, Balch WE. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem. 2009;78:959–91.

    Article  PubMed  CAS  Google Scholar 

  100. Koga H, Kaushik S, Cuervo AM. Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev. 2011;10:205–15.

    Article  PubMed  CAS  Google Scholar 

  101. Tomaru U, Takahashi S, Ishizu A, Miyatake Y, Gohda A, Suzuki S, Ono A, Ohara J, Baba T, Murata S, et al. Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities. Am J Pathol. 2012;180:963–72.

    Article  PubMed  CAS  Google Scholar 

  102. Cnop M, Ladriere L, Igoillo-Esteve M, Moura RF, Cunha DA. Causes and cures for endoplasmic reticulum stress in lipotoxic beta-cell dysfunction. Diabetes Obes Metab. 2010;12(Suppl 2):76–82.

    Article  PubMed  CAS  Google Scholar 

  103. Back SH, Kaufman RJ. Endoplasmic reticulum stress and type 2 diabetes. Annu Rev Biochem. 2012;81:767–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Schoonderwoert VT, Martens GJ. Proton pumping in the secretory pathway. J Membr Biol. 2001;182:159–69.

    Article  PubMed  CAS  Google Scholar 

  105. Barg S, Huang P, Eliasson L, Nelson DJ, Obermuller S, Rorsman P, Thevenot F, Renstrom E. Priming insulin granules for exocytosis by granule Cl(−) uptake and acidification. J Cell Sci. 2001;114:2145–54.

    PubMed  CAS  Google Scholar 

  106. Hatanaka M, Tanabe K, Yanai A, Ohta Y, Kondo M, Akiyama M, Shinoda K, Oka Y, Tanizawa Y. Wolfram syndrome 1 gene (WFS1) product localizes to secretory granules and determines granule acidification in pancreatic β-cells. Hum Mol Genet. 2011;20:1274–84.

    Article  PubMed  CAS  Google Scholar 

  107. Sladek S, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–5.

    Article  PubMed  CAS  Google Scholar 

  108. Chimienti F, Devergnas S, Favier A, Seve M. Identification and cloning of a β-cell–specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes. 2004;4:2330–6.

    Article  Google Scholar 

  109. Nicolson TJ, Bellomo EA, Wijesekara N, et al. Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes. 2009;58:2070–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Flannic K, et al. Loss-of-function mutation in SCL30A8 protect against type 2 diabetes. Nat Genet. 2014;46:357–63.

    Article  CAS  Google Scholar 

  111. Nudumpully-Govinadan P, Kakinen A, Pilkington EH, Davis TP, Ke PC, Ding F. Stabilizing off-pathway oligomers by polyphenol nanoassemblies for IAPP aggregation inhibition. Sci Rep. 2016;6:19463.

    Article  CAS  Google Scholar 

  112. Mo Y, Lei J, Sun Y, Zhang Q, Wei G. Conformational ensemble of hIAPP dimer: insight into a green tea extract inhibits hIAPP aggregation. Sci Rep. 2016;6:33076.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Kumar S, Birol M, Schlamadinger DE, Wojcik SP, Rhoades E, Miranker AD. Foldamer-mediated manipulation of a pre-amyloid toxin. Nat Commun. 2016;7:11412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Potter KJ, Scrocchi LA, Warnock GL, et al. Amyloid inhibitors enhance survival of cultured human islets. Biochem Biophys Acta. 2009;1790:566–74.

    Article  PubMed  CAS  Google Scholar 

  115. Wijesekara N, Ahren R, Wu L, Ha K, Liu Y, Wheeler MB, Fraser PE. Islet amyloid inhibitors improve glucose homeostasis in a transgenic mouse model of type 2 diabetes. Diabetes Obes Metab. 2015;17:1003–6.

    Article  PubMed  CAS  Google Scholar 

  116. Guan H, Chow KM, Shah R, Rhodes CJ, Hersh LB. Degradation of islet amyloid polypeptide by neprilysin. Diabetologia. 2012;55:2989–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Bennet RG, Hamel FG, Duckworth WC. An insulin-degrading enzyme inhibitor decreases amylin degradation, increases amyloid-induced cytotoxicity, and increases amyloid formation in insulinoma cell culture. Diabetes. 2003;52:2315–20.

    Article  Google Scholar 

  118. Aston-Mourney K, Zraika S, Udayasakar J, Subramanian SL, Green PS, Kahn SE, Hull RL. Matrix metalloproteinase-9 reduces islet amyloid formation by islet amyloid polypeptide. J Biol Chem. 2013;2013(288):3553–9.

    Article  CAS  Google Scholar 

  119. Meier DT, Tu L-H, Zraika S, Hogan MF, Templin AT, Hull RL, Raleigh DP, Kahn SE. Matrix metalloproteinase-9 protects islet from amyloid-induced toxicity. J Biol Chem. 2015;290:30475–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Solomon B, Koppel R, Hanan E, Katzav T. Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer beta-amyloid peptide. Proc Natl Acad Sci USA. 1996;93:452–5.

    Article  PubMed  CAS  Google Scholar 

  121. Emadi S, Liu R, Yuan B, Schulz P, McAllister C, Lyubchenko Y, Messer A, Sierks MR. Inhibiting aggregation of alpha-synuclein with human single chain antibody fragments. Biochemistry. 2004;43:2871–8.

    Article  PubMed  CAS  Google Scholar 

  122. Ladiwalaa ARA, Bhattacharyaa M, Perchiaccaa JM, Caob P, Raleighb DP, Abedinic A, Schmidtc AM, Varkeyd J, Langend R, Tessiera PM. Rational design of potent domain antibody inhibitors of amyloid fibril assembly. Proc Natl Acad Sci USA. 2012;109:19965–70.

    Article  Google Scholar 

  123. Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer’s disease. Nat Rev Neurol. 2001;7:137–52.

    Article  Google Scholar 

  124. Ott A, Stolk RP, Hofman A, van Harskamp F, Grobee DE, Breteler MM. Association of diabetes mellitus and dementia: the Rotterdam Study. Diabetologia. 1996;39:1392–7.

    Article  PubMed  CAS  Google Scholar 

  125. Li L, Holscher C. Common pathological processes in Alzheimer’s disease and type 2 diabetes: a review. Brain Res Rev. 2007;56:384–402.

    Article  PubMed  CAS  Google Scholar 

  126. Ohara T, Doi Y, Ninomiya T, Hirakawa Y, Hata J, Iwaki T, Kanba S, Kiyohara Y. Glucose tolerance status and risk of dementia in the community. The Hisayama Study. Neurology. 2011;77:1126–34.

    Article  PubMed  CAS  Google Scholar 

  127. Lutz TA, Meyer U. Amylin at the interface between metabolic and neurodegenerative disorders. Front Neurosci. 2015;9:216.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Banks WA, Kastin AJ. Differential permeability of the blood-brain barrier to two pancreatic peptides: insulin and amylin. Peptides. 1998;19:883–9.

    Article  PubMed  CAS  Google Scholar 

  129. Fu W, Patel A, Jhamandas JH. Amylin receptor: a common pathophysiological target in Alzheimer’s disease and diabetes mellitus. Front Aging Neurosci. 2013;5:42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Roostaei T, Nazeri A, Felsky D, Jager PLD, Schneider JA, Pollock BG, Bennett DA, Voineskos AN. Genome-wide interaction study of brain beta-amyloid burden and cognitive impairment in Alzheimer’s disease. Mol Psych. 2017;22:287–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the doctors and technicians in the Diabetes Research Group, the Second Department of Internal Medicine, Chiba University School of Medicine, Chiba, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azuma Kanatsuka.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanatsuka, A., Kou, S. & Makino, H. IAPP/amylin and β-cell failure: implication of the risk factors of type 2 diabetes. Diabetol Int 9, 143–157 (2018). https://doi.org/10.1007/s13340-018-0347-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13340-018-0347-1

Keywords

Navigation