Neurotherapeutics

, Volume 14, Issue 3, pp 646–661

Modulation of Aversive Memory by Adult Hippocampal Neurogenesis

Review

Abstract

Adult hippocampal neurogenesis (AHN) occurs in humans and every other mammalian species examined. Evidence that AHN is stimulated by a variety of treatments and behaviors with anxiolytic properties has sparked interest in harnessing AHN to treat anxiety disorders. However, relatively little is known about the mechanisms through which AHN modulates fear and anxiety. In this review, we consider evidence that AHN modulates fear and anxiety by altering the processing of and memory for traumatic experiences. Based on studies of the role of AHN in Pavlovian fear conditioning, we conclude that AHN modulates the consequences of aversive experience by influencing 1) the efficiency of hippocampus-dependent memory acquisition; 2) generalization of hippocampal fear memories; 3) long-term retention of hippocampal aversive memories; and 4) the nonassociative effects of acute aversive experience. The preclinical literature suggests that stimulation of AHN is likely to have therapeutically relevant consequences, including reduced generalization and long-term retention of aversive memories. However, the literature also identifies four caveats that must be addressed if AHN-based therapies are to achieve therapeutic benefits without significant side effects.

Keywords

Adult neurogenesis Hippocampus Anxiety Fear Depression Dentate gyrus Rodent Behavior Phobia 

Supplementary material

13311_2017_528_MOESM1_ESM.pdf (507 kb)
Required Author Forms Disclosure forms provided by the authors are available with the online version of this article. (PDF 506 kb)

References

  1. 1.
    Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406–417PubMedCrossRefGoogle Scholar
  2. 2.
    Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E (1999) Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci U S A 96:5263–5267PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Gould E, Tanapat P, McEwen BS, Flügge G, Fuchs E (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci U S A 95:3168–3171PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kornack DR, Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci U S A 96:5768–5773PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Eriksson PS, Perfilieva E, Björk-Eriksson T, et al. (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317PubMedCrossRefGoogle Scholar
  6. 6.
    Spalding KL, Bergmann O, Alkass K, et al (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Cameron HA, Woolley CS, McEwen BS, Gould E (1993) Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 56:337–344PubMedCrossRefGoogle Scholar
  8. 8.
    Kohler SJ, Williams NI, Stanton GB, Cameron JL, Greenough WT (2011) Maturation time of new granule cells in the dentate gyrus of adult macaque monkeys exceeds six months. Proceedings of the National Academy of Sciences U S A 108:10326–10331CrossRefGoogle Scholar
  9. 9.
    Van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270PubMedCrossRefGoogle Scholar
  10. 10.
    Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ (1999) Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci 2:260–265PubMedCrossRefGoogle Scholar
  11. 11.
    Döbrössy MD, Drapeau E, Aurousseau C, Le Moal M, Piazza PV, Abrous DN (2003) Differential effects of learning on neurogenesis: learning increases or decreases the number of newly born cells depending on their birth date. Mol Psychiatry 8:974–982PubMedCrossRefGoogle Scholar
  12. 12.
    Meshi D, Drew MR, Saxe M, et al. (2006) Hippocampal neurogenesis is not required for cbehavioral effects of environmental enrichment. Nat Neurosci 9:729–731PubMedCrossRefGoogle Scholar
  13. 13.
    Kempermann G, Brandon EP, Gage FH (1998) Environmental stimulation of 129/SvJ mice causes increased cell proliferation and neurogenesis in the adult dentate gyrus. Curr Biol 8:939–942PubMedCrossRefGoogle Scholar
  14. 14.
    Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495PubMedCrossRefGoogle Scholar
  15. 15.
    Schloesser RJ, Lehmann M, Martinowich K, Manji HK, Herkenham M (2010) Environmental enrichment requires adult neurogenesis to facilitate the recovery from psychosocial stress. Mol Psychiatry 15:1152–1163PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Gould E, McEwen BS, Tanapat P, Galea LA, Fuchs E (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 17:2492–2498PubMedGoogle Scholar
  17. 17.
    David DJ, Samuels BA, Rainer Q, et al (2009) Neurogenesis-dependent and-independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62:479–493PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Tanti A, Westphal W-P, Girault V, et al. (2013) Region-dependent and stage-specific effects of stress, environmental enrichment, and antidepressant treatment on hippocampal neurogenesis. Hippocampus 23:797–811PubMedCrossRefGoogle Scholar
  19. 19.
    Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033PubMedGoogle Scholar
  20. 20.
    Cameron HA, McKay RD (1999) Restoring production of hippocampal neurons in old age. Nat Neurosci 2:894–897PubMedCrossRefGoogle Scholar
  21. 21.
    Leuner B, Kozorovitskiy Y, Gross CG, Gould E (2007) Diminished adult neurogenesis in the marmoset brain precedes old age. Proc Natl Acad Sci U S A 104:17169–17173PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Boldrini M, Santiago AN, Hen R, et al. (2013) Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacology 38:1068–1077PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Boldrini M, Hen R, Underwood MD, et al. (2012) Hippocampal angiogenesis and progenitor cell proliferation are increased with antidepressant use in major depression. Biol Psychiatry 72:562–571PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110PubMedGoogle Scholar
  25. 25.
    Encinas JM, Vaahtokari A, Enikolopov G (2006) Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci U S A 103:8233–8238PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Drew MR, Hen R (2007) Adult hippocampal neurogenesis as target for the treatment of depression. CNS Neurol Disord Drug Targets 6:205–218PubMedCrossRefGoogle Scholar
  27. 27.
    Sahay A, Drew MR, Hen R (2007) Dentate gyrus neurogenesis and depression. In: The Dentate Gyrus: A Comprehensive Guide to Structure, Function, and Clinical Implications. Elsevier, pp 697–822Google Scholar
  28. 28.
    Santarelli L, Saxe M, Gross C, et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809PubMedCrossRefGoogle Scholar
  29. 29.
    Airan RD, Meltzer LA, Roy M, Gong Y, Chen H, Deisseroth K (2007) High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science 317:819–823PubMedCrossRefGoogle Scholar
  30. 30.
    Perera TD, Dwork AJ, Keegan KA, et al. (2011) Necessity of hippocampal neurogenesis for the therapeutic action of antidepressants in adult nonhuman primates. PLOS ONE 6:e17600PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127PubMedCrossRefGoogle Scholar
  32. 32.
    Sahay A, Hen R (2007) Adult hippocampal neurogenesis in depression. Nat Neurosci 10:1110–1115PubMedCrossRefGoogle Scholar
  33. 33.
    Kheirbek MA, Klemenhagen KC, Sahay A, Hen R (2012) Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci 15:1613–1620PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Yun S, Reynolds RP, Masiulis I, Eisch AJ (2016) Re-evaluating the link between neuropsychiatric disorders and dysregulated adult neurogenesis. Nat Med 22:1239–1247.PubMedCrossRefGoogle Scholar
  35. 35.
    Pascual-Brazo J, Baekelandt V, Encinas JM (2014) Neurogenesis as a new target for the development of antidepressant drugs. Curr Pharm Des 20:3763–3775PubMedCrossRefGoogle Scholar
  36. 36.
    Hill AS, Sahay A, Hen RE (2015) Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology 40: 2368–2378.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE (2005) Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62:617–627PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Mineka S, Zinbarg R (2006) A contemporary learning theory perspective on the etiology of anxiety disorders: it's not what you thought it was. Am Psychol 61:10–26PubMedCrossRefGoogle Scholar
  39. 39.
    Bouton ME, Mineka S, Barlow DH (2001) A modern learning theory perspective on the etiology of panic disorder. Psychol Rev 108:4–32PubMedCrossRefGoogle Scholar
  40. 40.
    Barlow DH (2002) Anxiety and its disorders: the nature and treatment of anxiety and panic. New York: Guilford PressGoogle Scholar
  41. 41.
    McCabe RE, Antony MM, Summerfeldt LJ, Liss A, Swinson RP (2003) Preliminary examination of the relationship between anxiety disorders in adults and self-reported history of teasing or bullying experiences. Cogn Behav Ther 32:187–193PubMedCrossRefGoogle Scholar
  42. 42.
    Hoge CW, Castro CA, Messer SC, McGurk D, Cotting DI, Koffman RL (2004) Combat duty in Iraq and Afghanistan, mental health problems, and barriers to care. N Engl J Med 351:13–22PubMedCrossRefGoogle Scholar
  43. 43.
    Fanselow MS, Lester LS (1988) A functional behavioristic approach to aversively motivated behavior: predatory imminence as a determinant of the topography of defensive behavior. Evolution and learningGoogle Scholar
  44. 44.
    Perusini JN, Fanselow MS (2015) Neurobehavioral perspectives on the distinction between fear and anxiety. Learn Mem 22:417–425PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Blanchard RJ, Blanchard DC (1989) Attack and defense in rodents as ethoexperimental models for the study of emotion. Prog Neuropsychopharmacol Biol Psychiatry 13:S3–S14PubMedCrossRefGoogle Scholar
  46. 46.
    Blanchard RJ, Fukunaga KK, Blanchard DC (1976) Environmental control of defensive reactions to a cat. Bull Psychon Soc 8:179–181CrossRefGoogle Scholar
  47. 47.
    Blanchard RJ, Fukunaga KK, Blanchard DC (1976) Environmental control of defensive reactions to footshock. Bull Psychon Soc 8:40CrossRefGoogle Scholar
  48. 48.
    Lissek S, Levenson J, Biggs AL, et al. (2008) Elevated fear conditioning to socially relevant unconditioned stimuli in social anxiety disorder. Am J Psychiatry 165:124–132PubMedCrossRefGoogle Scholar
  49. 49.
    Lissek S, Rabin S, Heller RE, et al. (2010) Overgeneralization of conditioned fear as a pathogenic marker of panic disorder. Am J Psychiatry 167:47–55PubMedCrossRefGoogle Scholar
  50. 50.
    Lissek S, Grillon C (2010) Overgeneralization of conditioned fear in the anxiety disorders. J Psychol 218:146–148Google Scholar
  51. 51.
    Jenewein J, Erni J, Moergeli H, et al. (2016) Altered pain perception and fear-learning deficits in subjects with posttraumatic stress disorder. J Pain 17:1325–1333PubMedCrossRefGoogle Scholar
  52. 52.
    Rabinak CA, Mori S, Lyons M, Milad MR, Phan KL (2017) Acquisition of CS-US contingencies during Pavlovian fear conditioning and extinction in social anxiety disorder and posttraumatic stress disorder. J Affect Disord 207:76–85PubMedCrossRefGoogle Scholar
  53. 53.
    Orcutt HK, Hannan SM, Seligowski AV, et al. (2017) Fear-potentiated startle and fear extinction in a sample of undergraduate women exposed to a campus mass shooting. Front Psychol 7:358–310CrossRefGoogle Scholar
  54. 54.
    Fanselow MS, LeDoux JE (1999) Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23:229–232PubMedCrossRefGoogle Scholar
  55. 55.
    Walker DL, Davis M (2008) Role of the extended amygdala in short-duration versus sustained fear: a tribute to Dr. Lennart Heimer. Brain Struct Funct 213:29–42PubMedCrossRefGoogle Scholar
  56. 56.
    Davis M (2006) Neural systems involved in fear and anxiety measured with fear- potentiated startle. Am Psychol 61:741PubMedCrossRefGoogle Scholar
  57. 57.
    Walker DL, Toufexis DJ, Davis M (2003) Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol 463:199–216PubMedCrossRefGoogle Scholar
  58. 58.
    Phillips RG, LeDoux JE (1994) Lesions of the dorsal hippocampal formation interfere with background but not foreground contextual fear conditioning. Learn Mem 1:34–44.PubMedGoogle Scholar
  59. 59.
    Kim JJ, Fanselow MS (1992) Modality-specific retrograde amnesia of fear. Science 256:675–677PubMedCrossRefGoogle Scholar
  60. 60.
    Fanselow MS (2010) From contextual fear to a dynamic view of memory systems. Trends Cogn Sci (Regul Ed) 14:7–15CrossRefGoogle Scholar
  61. 61.
    Rudy JW, O'Reilly RC (2001) Conjunctive representations, the hippocampus, and contextual fear conditioning. Cogn Affect Behav Neurosci 1:66–82PubMedCrossRefGoogle Scholar
  62. 62.
    Anagnostaras SG, Maren S, Fanselow MS (1999) Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. J Neurosci 19:1106–1114PubMedGoogle Scholar
  63. 63.
    Anagnostaras SG, Gale GD, Fanselow MS (2001) Hippocampus and contextual fear conditioning: recent controversies and advances. Hippocampus 11:8–17PubMedCrossRefGoogle Scholar
  64. 64.
    Bernier BE, Lacagnina AF, Drew MR (2014) Potent attenuation of context fear by extinction training contiguous with acquisition. Learn Mem 22:31–38PubMedCrossRefGoogle Scholar
  65. 65.
    O’Brien J, Sutherland RJ (2007) Evidence for episodic memory in a pavlovian conditioning procedure in rats. Hippocampus 17:1149–1152PubMedCrossRefGoogle Scholar
  66. 66.
    Yoon T, Otto T (2007) Differential contributions of dorsal vs. ventral hippocampus to auditory trace fear conditioning. Neurobiol Learn Mem 87:464–475PubMedCrossRefGoogle Scholar
  67. 67.
    Chowdhury N, Quinn JJ, Fanselow MS (2005) Dorsal hippocampus involvement in trace fear conditioning with long, but not short, trace intervals in mice. Behav Neurosci 119:1396–1402PubMedCrossRefGoogle Scholar
  68. 68.
    Quinn JJ, Oommen SS, Morrison GE, Fanselow MS (2002) Post-training excitotoxic lesions of the dorsal hippocampus attenuate forward trace, backward trace, and delay fear conditioning in a temporally specific manner. Hippocampus 12:495–504PubMedCrossRefGoogle Scholar
  69. 69.
    Gilmartin MR, Helmstetter FJ (2010) Trace and contextual fear conditioning require neural activity and NMDA receptor-dependent transmission in the medial prefrontal cortex. Learn Mem 17:289–296PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Moyer JR, Deyo RA, Disterhoft JF (1990) Hippocampectomy disrupts trace eye-blink conditioning in rabbits. Behav Neurosci 104:243–252PubMedCrossRefGoogle Scholar
  71. 71.
    Waddell J, Anderson ML, Shors TJ (2011) Changing the rate and hippocampal dependence of trace eyeblink conditioning: slow learning enhances survival of new neurons. Neurobiol Learn Mem 95:159–165PubMedCrossRefGoogle Scholar
  72. 72.
    Bolles RC, Collier AC, Bouton ME, Marlin NA (1978) Some tricks for ameliorating the trace-conditioning deficit. Bull Psychon Soc 11:403–406CrossRefGoogle Scholar
  73. 73.
    Saxe MD, Battaglia F, Wang J-W, et al (2006) Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci U S A 103:17501–17506PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Winocur G, Wojtowicz JM, Sekeres M, Snyder JS, Wang S (2006) Inhibition of neurogenesis interferes with hippocampus-dependent memory function. Hippocampus 16:296–304PubMedCrossRefGoogle Scholar
  75. 75.
    Drew MR, Denny CA, Hen R (2010) Arrest of adult hippocampal neurogenesis in mice impairs single- but not multiple-trial contextual fear conditioning. Behav Neurosci 124:446–454PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410:372–376PubMedCrossRefGoogle Scholar
  77. 77.
    Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y, Gould E (2002) Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 12:578–584PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Seo D-O, Carillo MA, Chih-Hsiung Lim S, Tanaka KF, Drew MR (2015) Adult Hippocampal neurogenesis modulates fear learning through associative and nonassociative mechanisms. J Neurosci 35:11330–11345PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Kheirbek MA, Drew LJ, Burghardt NS, et al. (2013) Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron 77:955–968PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Gu Y, Arruda-Carvalho M, Wang J, et al. (2012) Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci 15:1700–1706PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Cuppini R, Bucherelli C, Ambrogini P, et al. (2006) Age-related naturally occurring depression of hippocampal neurogenesis does not affect trace fear conditioning. Hippocampus 16:141–148PubMedCrossRefGoogle Scholar
  82. 82.
    Jaholkowski P, Kiryk A, Jedynak P, et al (2009) New hippocampal neurons are not obligatory for memory formation; cyclin D2 knockout mice with no adult brain neurogenesis show learning. Learn Mem 16:439–451PubMedCrossRefGoogle Scholar
  83. 83.
    Dupret D, Revest J-M, Koehl M, et al. (2008) Spatial relational memory requires hippocampal adult neurogenesis. PLOS ONE 3:e1959PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Zhang C-L, Zou Y, He W, Gage FH, Evans RM (2008) A role for adult TLX- positive neural stem cells in learning and behaviour. Nature 451:1004–1007PubMedCrossRefGoogle Scholar
  85. 85.
    Nakashiba T, Cushman JD, Pelkey KA, et al (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 30:188–201.CrossRefGoogle Scholar
  86. 86.
    Groves JO, Leslie I, Huang G-J, et al. (2013) Ablating adult neurogenesis in the rat has no effect on spatial processing: evidence from a novel pharmacogenetic model. PLOS Genet 9:e1003718PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Rudy JW, Huff NC, Matus-Amat P (2004) Understanding contextual fear conditioning: insights from a two-process model. Neurosci Biobehav Rev 28:675–685PubMedCrossRefGoogle Scholar
  88. 88.
    Wiltgen BJ, Sanders MJ, Anagnostaras SG, Sage JR, Fanselow MS (2006) Context fear learning in the absence of the hippocampus. J Neurosci 26:5484–5491PubMedCrossRefGoogle Scholar
  89. 89.
    Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285PubMedCrossRefGoogle Scholar
  90. 90.
    Fanselow MS (2000) Contextual fear, gestalt memories, and the hippocampus. Behav Brain Res 110:73–81PubMedCrossRefGoogle Scholar
  91. 91.
    Denny CA, Burghardt NS, Schachter DM, Hen R, Drew MR (2012) 4-to 6-week-old adult-born hippocampal neurons influence novelty-evoked exploration and contextual fear conditioning. Hippocampus 22:1188–1201PubMedCrossRefGoogle Scholar
  92. 92.
    Ge S, Yang C-H, Hsu K-S, Ming G-L, Song H (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54:559–566PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Snyder JS, Kee N, Wojtowicz JM (2001) Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J Neurophysiol 85:2423–2431PubMedGoogle Scholar
  94. 94.
    Wang S, Scott BW, Wojtowicz JM (2000) Heterogenous properties of dentate granule neurons in the adult rat. J Neurobiol 42:248–257PubMedCrossRefGoogle Scholar
  95. 95.
    Restivo L, Niibori Y, Mercaldo V, Josselyn SA, Frankland PW (2015) Development of adult-generated cell connectivity with excitatory and inhibitory cell populations in the hippocampus. J Neurosci 35:10600–10612PubMedCrossRefGoogle Scholar
  96. 96.
    Temprana SG, Mongiat LA, Yang SM, et al. (2015) Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells. Neuron 85:116–130PubMedCrossRefGoogle Scholar
  97. 97.
    Gonçalves JT, Bloyd CW, Shtrahman M, et al. (2016) In vivo imaging of dendritic pruning in dentate granule cells. Nat Neurosci 19:788–791PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Schmidt-Hieber C, Jonas P, Bischofberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429:184–187PubMedCrossRefGoogle Scholar
  99. 99.
    Mongiat LA, Espósito MS, Lombardi G, Schinder AF (2009) Reliable activation of immature neurons in the adult hippocampus. PLOS ONE 4:e5320PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Dieni CV, Nietz AK, Panichi R, Wadiche JI, Overstreet-Wadiche L (2013) Distinct determinants of sparse activation during granule cell maturation. J Neurosci 33:19131–19142PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Dieni CV, Panichi R, Aimone JB, Kuo CT, Wadiche JI, Overstreet-Wadiche L (2016) Low excitatory innervation balances high intrinsic excitability of immature dentate neurons. Nat Commun 7:11313PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Monje ML, Mizumatsu S, Fike JR, Palmer TD (2002) Irradiation induces neural precursor-cell dysfunction. Nat Med 8:955–962PubMedCrossRefGoogle Scholar
  103. 103.
    Nagai R, Tsunoda S, Hori Y, Asada H (2000) Selective vulnerability to radiation in the hippocampal dentate granule cells. Surg Neurol 53:503–506PubMedCrossRefGoogle Scholar
  104. 104.
    Tada E, Parent JM, Lowenstein DH, Fike JR (2000) X-irradiation causes a prolonged reduction in cell proliferation in the dentate gyrus of adult rats. Neuroscience 99:33–41PubMedCrossRefGoogle Scholar
  105. 105.
    Kee N, Teixeira CM, Wang AH, Frankland PW (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 10:355–362PubMedCrossRefGoogle Scholar
  106. 106.
    Aimone JB, Wiles J, Gage FH (2006) Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci 9:723–727PubMedCrossRefGoogle Scholar
  107. 107.
    Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11:1–12CrossRefGoogle Scholar
  108. 108.
    Sekeres MJ, Mercaldo V, Richards B, et al. (2012) Increasing CRTC1 function in the dentate gyrus during memory formation or reactivation increases memory strength without compromising memory quality. J Neurosci 32:17857–17868PubMedCrossRefGoogle Scholar
  109. 109.
    Yiu AP, Mercaldo V, Yan C, et al. (2014) Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 83:722–735PubMedCrossRefGoogle Scholar
  110. 110.
    Han J-H, Kushner SA, Yiu AP, et al. (2007) Neuronal competition and selection during memory formation. Science 316:457–460PubMedCrossRefGoogle Scholar
  111. 111.
    Park S, Kramer EE, Mercaldo V, et al. (2016) Neuronal allocation to a hippocampal engram. Neuropsychopharmacology 41:2987–2993PubMedCrossRefGoogle Scholar
  112. 112.
    Snyder JS, Clifford MA, Jeurling SI, Cameron HA (2012) Complementary activation of hippocampal–cortical subregions and immature neurons following chronic training in single and multiple context versions of the water maze. Behav Brain Res 227:330–339PubMedCrossRefGoogle Scholar
  113. 113.
    Huckleberry KA, Kane GA, Mathis RJ, Cook SG, Clutton JE, Drew MR (2015) Behavioral experience induces zif268 expression in mature granule cells but suppresses its expression in immature granule cells. Front Syst Neurosci 9:1–9CrossRefGoogle Scholar
  114. 114.
    Stone SS, Teixeira CM, Zaslavsky K, et al. (2010) Functional convergence of developmentally and adult-generated granule cells in dentate gyrus circuits supporting hippocampus-dependent memory. Hippocampus 21:1348–1362.PubMedCrossRefGoogle Scholar
  115. 115.
    Tronel S, Lemaire V, Charrier V, Montaron M-F, Abrous DN (2014) Influence of ontogenetic age on the role of dentate granule neurons. Brain Struct Funct 220:645–661PubMedCrossRefGoogle Scholar
  116. 116.
    Snyder JS, Choe JS, Clifford MA, et al. (2009) Adult-born hippocampal neurons are more numerous, faster maturing, and more involved in behavior in rats than in mice. J Neurosci 29:14484–14495PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Piatti VC, Ewell LA, Leutgeb JK (2013) Neurogenesis in the dentate gyrus: carrying the message or dictating the tone. Front Neurosci 7:50PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Ikrar T, Guo N, He K, et al. (2013) Adult neurogenesis modifies excitability of the dentate gyrus. Front Neural Circuits 7:204PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Lacefield CO, Itskov V, Reardon T, Hen R, Gordon JA (2010) Effects of adult-generated granule cells on coordinated network activity in the dentate gyrus. Hippocampus 22:106–116PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Danielson NB, Kaifosh P, Zaremba JD, et al (2016) Distinct contribution of adult-born hippocampal granule cells to context encoding. Neuron 90:101–112PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Neunuebel JP, Knierim JJ (2012) Spatial firing correlates of physiologically distinct cell types of the rat dentate gyrus. J Neurosci 32:3848–3858PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Iyengar SS, LaFrancois JJ, Friedman D, et al. (2015) Suppression of adult neurogenesis increases the acute effects of kainic acid. Exp Neurol 264:135–149PubMedCrossRefGoogle Scholar
  123. 123.
    Drew LJ, Kheirbek MA, Luna VM, et al. (2016) Activation of local inhibitory circuits in the dentate gyrus by adult-born neurons. Hippocampus 26:763–778PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Clelland CD, Choi M, Romberg C, et al (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325:210–213PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Swan AA, Clutton JE, Chary PK, Cook SG, Liu GG, Drew MR (2014) Characterization of the role of adult neurogenesis in touch-screen discrimination learning. Hippocampus 24:1581–1591PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Saxe MD, Malleret G, Vronskaya S, et al. (2007) Paradoxical influence of hippocampal neurogenesis on working memory. Proc Natl Acad Sci U S A 104:4642–4646PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Snyder JS, Hong NS, McDonald RJ, Wojtowicz JM (2005) A role for adult neurogenesis in spatial long-term memory. Neuroscience 130:843–852PubMedCrossRefGoogle Scholar
  128. 128.
    Arruda-Carvalho M, Sakaguchi M, Akers KG, Josselyn SA, Frankland PW (2011) Posttraining ablation of adult-generated neurons degrades previously acquired memories. J Neurosci 31:15113–15127PubMedCrossRefGoogle Scholar
  129. 129.
    Liu X, Ramirez S, Pang PT, et al. (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484:381–385PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Ramirez S, Liu X, Lin PA, et al. (2013) Creating a false memory in the hippocampus. Science 341:387–391PubMedCrossRefGoogle Scholar
  131. 131.
    Denny CA, Kheirbek MA, Alba EL, et al. (2014) Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron 83:189–201PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Redondo RL, Kim J, Arons AL, Ramirez S, Liu X, Tonegawa S (2014) Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 513:426–430PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Cai DJ, Aharoni D, Shuman T, et al (2016) A shared neural ensemble links distinct contextual memories encoded close in time. Nature 534:115–118PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatr 20:11–21PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Corkin S (2002) What's new with the amnesic patient H.M.? Nat Rev Neurosci 3:153–160PubMedCrossRefGoogle Scholar
  136. 136.
    Wiltgen BJ, Silva AJ (2007) Memory for context becomes less specific with time. Learn Mem 14:313–317PubMedCrossRefGoogle Scholar
  137. 137.
    Steinvorth S, Levine B, Corkin S (2005) Medial temporal lobe structures are needed to re-experience remote autobiographical memories: evidence from H.M. and W.R. Neuropsychologia 43:479–496PubMedCrossRefGoogle Scholar
  138. 138.
    Frankland PW, Bontempi B (2005) The organization of recent and remote memories. Nat Rev Neurosci 6:119–130PubMedCrossRefGoogle Scholar
  139. 139.
    Meltzer LA, Yabaluri R, Deisseroth K (2005) A role for circuit homeostasis in adult neurogenesis. Trends Neurosci 28:653–660PubMedCrossRefGoogle Scholar
  140. 140.
    Weisz VI, Argibay PF (2012) Neurogenesis interferes with the retrieval of remote memories: forgetting in neurocomputational terms. Cognition 125:13–25PubMedCrossRefGoogle Scholar
  141. 141.
    Kitamura T, Saitoh Y, Takashima N, et al. (2009) Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory. Cell 139:814–827PubMedCrossRefGoogle Scholar
  142. 142.
    Frankland PW, Kohler S, Josselyn SA (2013) Hippocampal neurogenesis and forgetting. Trends Neurosci 36:497–503PubMedCrossRefGoogle Scholar
  143. 143.
    Akers KG, Martinez-Canabal A, Restivo L, et al (2014) Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 344:598–602PubMedCrossRefGoogle Scholar
  144. 144.
    Treves A, Rolls ET (1992) Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus 2:189–199PubMedCrossRefGoogle Scholar
  145. 145.
    O'Reilly RC, McClelland JL (1994) Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus 4:661–682PubMedCrossRefGoogle Scholar
  146. 146.
    Gilbert PE, Kesner RP, Lee I (2001) Dissociating hippocampal subregions: A double dissociation between dentate gyrus and CA1. Hippocampus 11:626–636PubMedCrossRefGoogle Scholar
  147. 147.
    GoodSmith D, Chen X, Wang C, et al. (2017) Spatial representations of granule cells and mossy cells of the dentate gyrus. Neuron 93:677–690.PubMedCrossRefGoogle Scholar
  148. 148.
    Leutgeb JK, Leutgeb S, Moser M-B, Moser EI (2007) Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315:961–966PubMedCrossRefGoogle Scholar
  149. 149.
    Marr D (1971) Simple memory: a theory for Archicortex. Philos Trans R Soc B Biol Sci 262:23–81CrossRefGoogle Scholar
  150. 150.
    Niibori Y, Yu T-S, Epp JR, Akers KG, Josselyn SA, Frankland PW (2012) Suppression of adult neurogenesis impairs population coding of similar contexts in hippocampal CA3 region. Nature Commun 3: 1253.CrossRefGoogle Scholar
  151. 151.
    Sahay A, Scobie KN, Hill AS, et al. (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472:466–470PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Tronel S, Belnoue L, Grosjean N, et al. (2010) Adult-born neurons are necessary for extended contextual discrimination. Hippocampus 22:292–298PubMedCrossRefGoogle Scholar
  153. 153.
    Wu MV, Hen R (2014) Functional dissociation of adult-born neurons along the dorsoventral axis of the dentate gyrus. Hippocampus 24:751–761PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Kheirbek MA, Tannenholz L, Hen R (2012) NR2B-dependent plasticity of adult-born granule cells is necessary for context discrimination. J Neurosci 32:8696–8702PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    McAvoy K, Besnard A, Sahay A (2015) Adult hippocampal neurogenesis and pattern separation in DG: a role for feedback inhibition in modulating sparseness to govern population-based coding. Front Syst Neurosci 9:120PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Carew TJ, Castellucci VF, Kandel ER (1971) An analysis of dishabituation and sensitization of the gill-withdrawal reflex in Aplysia. Int J Neurosci 2:79–98PubMedCrossRefGoogle Scholar
  157. 157.
    Castellucci V, Kandel ER (1976) Presynaptic facilitation as a mechanism for behavioral sensitization in Aplysia. Science 194 4270:1176–1178PubMedCrossRefGoogle Scholar
  158. 158.
    Pitman RK, Rasmusson AM, Koenen KC, et al. (2012) Biological studies of post-traumatic stress disorder. Nat Rev Neurosci 13:769–787PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Perusini JN, Meyer EM, Long VA, et al. (2015) Induction and expression of fear sensitization caused by acute traumatic stress. Neuropsychopharmacology 41:45–57PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Rau V, DeCola JP, Fanselow MS (2005) Stress-induced enhancement of fear learning: an animal model of posttraumatic stress disorder. Neurosci Biobehav Rev 29:1207–1223PubMedCrossRefGoogle Scholar
  161. 161.
    Rau V, Fanselow MS (2009) Exposure to a stressor produces a long lasting enhancement of fear learning in rats. Stress 12:125–133PubMedCrossRefGoogle Scholar
  162. 162.
    Adamec RE, Blundell J, Burton P (2005) Neural circuit changes mediating lasting brain and behavioral response to predator stress. Neurosci Biobehav Rev 29:1225–1241PubMedCrossRefGoogle Scholar
  163. 163.
    Costanzi M, Cannas S, Saraulli D, Rossi-Arnaud C, Cestari V (2011) Extinction after retrieval: effects on the associative and nonassociative components of remote contextual fear memory. Learn Mem 18:508–518PubMedCrossRefGoogle Scholar
  164. 164.
    Long VA, Fanselow MS (2012) Stress-enhanced fear learning in rats is resistant to the effects of immediate massed extinction. Stress 15:627–636PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Golub Y, Mauch CP, Dahlhoff M, Wotjak CT (2009) Consequences of extinction training on associative and non-associative fear in a mouse model of Posttraumatic Stress Disorder (PTSD). Behav Brain Res 205:544–549PubMedCrossRefGoogle Scholar
  166. 166.
    Siegmund A, Wotjak CT (2007) Hyperarousal does not depend on trauma-related contextual memory in an animal model of Posttraumatic Stress Disorder. Physiol Behav 90:103–107PubMedCrossRefGoogle Scholar
  167. 167.
    Kamprath K, Wotjak CT (2004) Nonassociative learning processes determine expression and extinction of conditioned fear in mice. Learn Mem 11:770–786PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Revest J-M, Dupret D, Koehl M, et al. (2009) Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol Psychiatry 14:959–967PubMedCrossRefGoogle Scholar
  169. 169.
    Yun S, Donovan MH, Ross MN, et al (2016) Stress-induced anxiety- and depressive-like phenotype associated with transient reduction in neurogenesis in adult nestin-CreERT2/diphtheria toxin fragment A transgenic mice. PLOS ONE 11:e0147256–25Google Scholar
  170. 170.
    Jacobson L, Sapolsky R (1991) The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr Rev 12:118–134PubMedCrossRefGoogle Scholar
  171. 171.
    Herman JP, Schäfer MK, Young EA, et al. (1989) Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis. J Neurosci 9:3072–3082PubMedGoogle Scholar
  172. 172.
    Jankord R, Herman JP (2008) Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann N Y Acad Sci 1148:64–73PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Reul JM, de Kloet ER (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117:2505–2511PubMedCrossRefGoogle Scholar
  174. 174.
    Dallman MF, Yates FE (1969) Dynamic asymmetries in the corticosteroid feedback path and distribution-metabolism-binding elements of the adrenocortical system. Ann N Y Acad Sci 156:696–721PubMedCrossRefGoogle Scholar
  175. 175.
    Jones MT, Brush FR, Neame RL (1972) Characteristics of fast feedback control of corticotrophin release by corticosteroids. J Endocrinol 55:489–497PubMedCrossRefGoogle Scholar
  176. 176.
    Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476:458–461PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Schloesser RJ, Manji HK, Martinowich K (2009) Suppression of adult neurogenesis leads to an increased hypothalamo-pituitary-adrenal axis response. Neuroreport 20:553–557PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Surget A, Tanti A, Leonardo ED, et al (2011) Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry 16:1177–1188PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Adamec R, Fougere D, Risbrough V (2009) CRF receptor blockade prevents initiation and consolidation of stress effects on affect in the predator stress model of PTSD. Int J Neuropsychopharm 13:747–757CrossRefGoogle Scholar
  180. 180.
    Surget A, Saxe M, Leman S, et al. (2008) Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry 64:293–301PubMedCrossRefGoogle Scholar
  181. 181.
    Bessa JM, Ferreira D, Melo I, et al. (2009) The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatry 14:764–773PubMedCrossRefGoogle Scholar
  182. 182.
    Mateus-Pinheiro A, Pinto L, Bessa JM, et al. (2013) Sustained remission from depressive-like behavior depends on hippocampal neurogenesis. Transl Psychiatry 3:e210PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    van Praag H, Schinder AF, Christie BR, et al. (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034PubMedCrossRefGoogle Scholar
  184. 184.
    Rudy JW, Barrientos RM, O’Reilly RC (2002) Hippocampal formation supports conditioning to memory of a context. Behav Neurosci 116:530–538PubMedCrossRefGoogle Scholar
  185. 185.
    Ferbinteanu J, McDonald RJ (2001) Dorsal/ventral hippocampus, fornix, and conditioned place preference. Hippocampus 11:187–200PubMedCrossRefGoogle Scholar
  186. 186.
    Ishikawa R, Fukushima H, Frankland PW, Kida S (2016) Hippocampal neurogenesis enhancers promote forgetting of remote fear memory after hippocampal reactivation by retrieval. eLife 5:e17464PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Cenquizca LA, Swanson LW (2007) Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex. Brain Res Rev 56:1–26PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Vann SD, Aggleton JP, Maguire EA (2009) What does the retrosplenial cortex do? Nat Rev Neurosci 10:792–802PubMedCrossRefGoogle Scholar
  189. 189.
    Corcoran KA, Frick BJ, Radulovic J, Kay LM (2016) Analysis of coherent activity between retrosplenial cortex, hippocampus, thalamus, and anterior cingulate cortex during retrieval of recent and remote context fear memory. Neurobiol Learn Mem 127:93–101PubMedCrossRefGoogle Scholar
  190. 190.
    Jung MW, Wiener SI, McNaughton BL (1994) Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. J Neurosci 14:7347–7356PubMedGoogle Scholar
  191. 191.
    Muller R (1996) A quarter of a century of place cells. Neuron 17:813–822PubMedCrossRefGoogle Scholar
  192. 192.
    Bannerman DM, Yee BK, Good MA, Heupel MJ, Iversen SD, Rawlins JN (1999) Double dissociation of function within the hippocampus: a comparison of dorsal, ventral, and complete hippocampal cytotoxic lesions. Behav Neurosci 113:1170–1188PubMedCrossRefGoogle Scholar
  193. 193.
    Bannerman DM, Deacon RMJ, Offen S, Friswell J, Grubb M, Rawlins JNP (2002) Double dissociation of function within the hippocampus: Spatial memory and hyponeophagia. Behav Neurosci 116:884–901PubMedCrossRefGoogle Scholar
  194. 194.
    McHugh SB, Deacon RMJ, Rawlins JNP, Bannerman DM (2004) Amygdala and ventral hippocampus contribute differentially to mechanisms of fear and anxiety. Behav Neurosci 118:63–78PubMedCrossRefGoogle Scholar
  195. 195.
    Kjelstrup KG, Tuvnes FA, Steffenach H-A, Murison R, Moser EI, Moser M-B (2002) Reduced fear expression after lesions of the ventral hippocampus. Proc Natl Acad Sci U S A 99:10825–10830PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Zou D, Chen L, Deng D, et al (2016) DREADD in parvalbumin interneurons of the dentate gyrus modulates anxiety, social interaction and memory extinction. Curr Mol Med 16:91–102PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Tang YP, Shimizu E, Dube GR, et al. (1999) Genetic enhancement of learning and memory in mice. Nature 401:63–69PubMedCrossRefGoogle Scholar
  198. 198.
    Kobayashi K, Ikeda Y, Sakai A, et al. (2010) Reversal of hippocampal neuronal maturation by serotonergic antidepressants. Proc Natl Acad Sci U S A 107:8434–8439PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Bakker A, Krauss GL, Albert MS, et al. (2012) Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74:467–474PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Yassa MA, Stark CEL (2011) Pattern separation in the hippocampus. Trends Neurosci 34:515–525PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Tannenholz L, Hen R, Kheirbek MA (2016) GluN2B-containg NMDA receptors on adult-born granule cells contribute to the antidepressant action of fluoxetine. Front Neurosci 10:242PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2017

Authors and Affiliations

  1. 1.Center for Learning and Memory and Department of NeuroscienceUniversity of Texas at AustinAustinUSA

Personalised recommendations