, Volume 14, Issue 3, pp 687–697 | Cite as

Reward Circuitry in Addiction

  • Sarah Cooper
  • A. J. Robison
  • Michelle S. Mazei-Robison


Understanding the brain circuitry that underlies reward is critical to improve treatment for many common health issues, including obesity, depression, and addiction. Here we focus on insights into the organization and function of reward circuitry and its synaptic and structural adaptations in response to cocaine exposure. While the importance of certain circuits, such as the mesocorticolimbic dopamine pathway, are well established in drug reward, recent studies using genetics-based tools have revealed functional changes throughout the reward circuitry that contribute to different facets of addiction, such as relapse and craving. The ability to observe and manipulate neuronal activity within specific cell types and circuits has led to new insight into not only the basic connections between brain regions, but also the molecular changes within these specific microcircuits, such as neurotrophic factor and GTPase signaling or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor function, that underlie synaptic and structural plasticity evoked by drugs of abuse. Excitingly, these insights from preclinical rodent work are now being translated into the clinic, where transcranial magnetic simulation and deep brain stimulation therapies are being piloted in human cocaine dependence. Thus, this review seeks to summarize current understanding of the major brain regions implicated in drug-related behaviors and the molecular mechanisms that contribute to altered connectivity between these regions, with the postulation that increased knowledge of the plasticity within the drug reward circuit will lead to new and improved treatments for addiction.

Key Words

Cocaine reward dopamine glutamate ventral tegmental area nucleus accumbens 



The work conducted in the Robison and Mazei-Robison laboratories is currently supported by grants from the National Institutes on Mental Health (MH111604, AJR) and Drug Abuse (DA039895, MMR).

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Supplementary material

13311_2017_525_MOESM1_ESM.pdf (507 kb)
ESM 1 (PDF 506 kb)


  1. 1.
    Swanson LW. The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 1982; 9:321-353.PubMedCrossRefGoogle Scholar
  2. 2.
    Nair-Roberts RG, Chatelain-Badie SD, Benson E, White-Cooper H, Bolam JP, Ungless MA. Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience 2008; 152:1024-1031.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 1988; 85:5274-5278.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Anderson SM, Pierce RC. Cocaine-induced alterations in dopamine receptor signaling: implications for reinforcement and reinstatement. Pharmacol Ther 2005; 106:389-403.PubMedCrossRefGoogle Scholar
  5. 5.
    Tsai HC, Zhang F, Adamantidis A, et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 2009; 324:1080-1084.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Witten IB, Steinberg EE, Lee SY, et al. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 2011; 72:721-733.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Pascoli V, Terrier J, Hiver A, Luscher C. Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron 2015; 88:1054-1066.PubMedCrossRefGoogle Scholar
  8. 8.
    Lammel S, Lim BK, Malenka RC. Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 2014; 76 Pt B:351-359.Google Scholar
  9. 9.
    Lammel S, Hetzel A, Hackel O, Jones I, Liss B, Roeper J. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 2008; 57:760-773.PubMedCrossRefGoogle Scholar
  10. 10.
    Lammel S, Ion DI, Roeper J, Malenka RC. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 2011; 70:855-862.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Lammel S, Lim BK, Ran C, et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 2012; 491:212-217.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Nectow AR, Ekstrand MI, Friedman JM. Molecular characterization of neuronal cell types based on patterns of projection with Retro-TRAP. Nat Protoc 2015; 10:1319-1327.PubMedCrossRefGoogle Scholar
  13. 13.
    Ekstrand MI, Nectow AR, Knight ZA, Latcha KN, Pomeranz LE, Friedman JM. Molecular profiling of neurons based on connectivity. Cell 2014; 157:1230-1242.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    van Zessen R, Phillips JL, Budygin EA, Stuber GD. Activation of VTA GABA neurons disrupts reward consumption. Neuron 2012; 73:1184-1194.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Tan KR, Yvon C, Turiault M, et al. GABA neurons of the VTA drive conditioned place aversion. Neuron 2012; 73:1173-1183.PubMedCrossRefGoogle Scholar
  16. 16.
    Gerfen CR, Engber TM, Mahan LC, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 1990; 250:1429-1432.PubMedCrossRefGoogle Scholar
  17. 17.
    Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 2011; 34:441-466.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kupchik YM, Brown RM, Heinsbroek JA, Lobo MK, Schwartz DJ, Kalivas PW. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat Neurosci 2015; 18:1230-1232.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Smith RJ, Lobo MK, Spencer S, Kalivas PW. Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways). Curr Opin Neurobiol 2013; 23:546-552.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Lenz JD, Lobo MK. Optogenetic insights into striatal function and behavior. Behav Brain Res 2013; 255:44-54.PubMedCrossRefGoogle Scholar
  21. 21.
    Saddoris MP, Sugam JA, Cacciapaglia F, Carelli RM. Rapid dopamine dynamics in the accumbens core and shell: learning and action. Front Biosci (Elite Ed) 2013; 5:273-288.Google Scholar
  22. 22.
    Meredith GE, Baldo BA, Andrezjewski ME, Kelley AE. The structural basis for mapping behavior onto the ventral striatum and its subdivisions. Brain Struct Funct 2008; 213:17-27.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sesack SR, Grace AA. Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 2010; 35:27-47.PubMedCrossRefGoogle Scholar
  24. 24.
    Floresco SB. The nucleus accumbens: an interface between cognition, emotion, and action. Annu Rev Psychol 2015; 66:25-52.PubMedCrossRefGoogle Scholar
  25. 25.
    Kalivas PW, Volkow N, Seamans J. Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron 2005; 45:647-650.PubMedCrossRefGoogle Scholar
  26. 26.
    Ma YY, Lee BR, Wang X, et al. Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections. Neuron 2014; 83:1453-1467.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Scofield MD, Heinsbroek JA, Gipson CD, et al. The nucleus accumbens: mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis. Pharmacol Rev 2016; 68:816-871.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Oleskevich S, Descarries L, Lacaille JC. Quantified distribution of the noradrenaline innervation in the hippocampus of adult rat. J Neurosci 1989; 9:3803-3815.PubMedGoogle Scholar
  29. 29.
    French SJ, Totterdell S. Individual nucleus accumbens-projection neurons receive both basolateral amygdala and ventral subicular afferents in rats. Neuroscience 2003; 119:19-31.PubMedCrossRefGoogle Scholar
  30. 30.
    French SJ, Hailstone JC, Totterdell S. Basolateral amygdala efferents to the ventral subiculum preferentially innervate pyramidal cell dendritic spines. Brain Res 2003; 981:160-167.PubMedCrossRefGoogle Scholar
  31. 31.
    Pascoli V, Terrier J, Espallergues J, Valjent E, O'Connor EC, Luscher C. Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature 2014; 509:459-464.PubMedCrossRefGoogle Scholar
  32. 32.
    Vezina P, Giovino AA, Wise RA, Stewart J. Environment-specific cross-sensitization between the locomotor activating effects of morphine and amphetamine. Pharmacol Biochem Behav 1989; 32:581-584.PubMedCrossRefGoogle Scholar
  33. 33.
    Charara A, Grace AA. Dopamine receptor subtypes selectively modulate excitatory afferents from the hippocampus and amygdala to rat nucleus accumbens neurons. Neuropsychopharmacology 2003; 28:1412-1421.PubMedCrossRefGoogle Scholar
  34. 34.
    Stuber GD, Sparta DR, Stamatakis AM, et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 2011; 475:377-380.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ambroggi F, Ishikawa A, Fields HL, Nicola SM. Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron 2008; 59:648-661.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Janak PH, Tye KM. From circuits to behaviour in the amygdala. Nature 2015; 517:284-292.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Zhu Y, Wienecke CF, Nachtrab G, Chen X. A thalamic input to the nucleus accumbens mediates opiate dependence. Nature 2016; 530:219-222.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Browning JR, Jansen HT, Sorg BA. Inactivation of the paraventricular thalamus abolishes the expression of cocaine conditioned place preference in rats. Drug Alcohol Depend 2014; 134:387-390.PubMedCrossRefGoogle Scholar
  39. 39.
    James MH, Charnley JL, Flynn JR, Smith DW, Dayas CV. Propensity to 'relapse' following exposure to cocaine cues is associated with the recruitment of specific thalamic and epithalamic nuclei. Neuroscience 2011; 199:235-242.PubMedCrossRefGoogle Scholar
  40. 40.
    James MH, Charnley JL, Jones E, et al. Cocaine- and amphetamine-regulated transcript (CART) signaling within the paraventricular thalamus modulates cocaine-seeking behaviour. PLOS ONE 2010; 5:e12980.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Joffe ME, Grueter BA. Cocaine experience enhances thalamo-accumbens N-methyl-D-aspartate receptor function. Biol Psychiatry 2016; 80:671-681.PubMedCrossRefGoogle Scholar
  42. 42.
    Neumann PA, Wang Y, Yan Y, et al. Cocaine-induced synaptic alterations in thalamus to nucleus accumbens projection. Neuropsychopharmacology 2016; 41:2399-2410.PubMedCrossRefGoogle Scholar
  43. 43.
    Luscher C. The emergence of a circuit model for addiction. Annu Rev Neurosci 2016; 39:257-276.PubMedCrossRefGoogle Scholar
  44. 44.
    Golden SA, Russo SJ. Mechanisms of psychostimulant-induced structural plasticity. Cold Spring Harb Perspect Med 2012; 2.Google Scholar
  45. 45.
    Luscher C, Malenka RC. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 2011; 69:650-663.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Russo SJ, Mazei-Robison MS, Ables JL, Nestler EJ. Neurotrophic factors and structural plasticity in addiction. Neuropharmacology 2009; 56(Suppl. 1):73-82.PubMedCrossRefGoogle Scholar
  47. 47.
    Graham DL, Edwards S, Bachtell RK, DiLeone RJ, Rios M, Self DW. Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat Neurosci 2007; 10:1029-1037.PubMedCrossRefGoogle Scholar
  48. 48.
    Graham DL, Krishnan V, Larson EB, et al. Tropomyosin-related kinase B in the mesolimbic dopamine system: region-specific effects on cocaine reward. Biol Psychiatry 2009; 65:696-701.PubMedCrossRefGoogle Scholar
  49. 49.
    Grimm JW, Lu L, Hayashi T, Hope BT, Su TP, Shaham Y. Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J Neurosci 2003; 23:742-747.PubMedGoogle Scholar
  50. 50.
    Le Foll B, Diaz J, Sokoloff P. A single cocaine exposure increases BDNF and D3 receptor expression: implications for drug-conditioning. Neuroreport 2005; 16:175-178.PubMedCrossRefGoogle Scholar
  51. 51.
    Fumagalli F, Moro F, Caffino L, et al. Region-specific effects on BDNF expression after contingent or non-contingent cocaine i.v. self-administration in rats. Int J Neuropsychopharmacol 2013; 16:913-918.PubMedCrossRefGoogle Scholar
  52. 52.
    McGinty JF, Whitfield TW, Jr., Berglind WJ. Brain-derived neurotrophic factor and cocaine addiction. Brain Res 2010; 1314:183-193.PubMedCrossRefGoogle Scholar
  53. 53.
    Horger BA, Iyasere CA, Berhow MT, Messer CJ, Nestler EJ, Taylor JR. Enhancement of locomotor activity and conditioned reward to cocaine by brain-derived neurotrophic factor. J Neurosci 1999; 19:4110-4122.PubMedGoogle Scholar
  54. 54.
    Lu L, Grimm JW, Hope BT, Shaham Y. Incubation of cocaine craving after withdrawal: a review of preclinical data. Neuropharmacology 2004; 47(Suppl. 1):214-226.PubMedCrossRefGoogle Scholar
  55. 55.
    Li X, DeJoseph MR, Urban JH, et al. Different roles of BDNF in nucleus accumbens core versus shell during the incubation of cue-induced cocaine craving and its long-term maintenance. J Neurosci 2013; 33:1130-1142.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Bahi A, Boyer F, Chandrasekar V, Dreyer JL. Role of accumbens BDNF and TrkB in cocaine-induced psychomotor sensitization, conditioned-place preference, and reinstatement in rats. Psychopharmacology (Berl) 2008; 199:169-182.CrossRefGoogle Scholar
  57. 57.
    Whitfield TW, Jr., Shi X, Sun WL, McGinty JF. The suppressive effect of an intra-prefrontal cortical infusion of BDNF on cocaine-seeking is Trk receptor and extracellular signal-regulated protein kinase mitogen-activated protein kinase dependent. J Neurosci 2011; 31:834-842.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Berglind WJ, See RE, Fuchs RA, et al. A BDNF infusion into the medial prefrontal cortex suppresses cocaine seeking in rats. Eur J Neurosci 2007; 26:757-766.PubMedCrossRefGoogle Scholar
  59. 59.
    Berglind WJ, Whitfield TW, Jr., LaLumiere RT, Kalivas PW, McGinty JF. A single intra-PFC infusion of BDNF prevents cocaine-induced alterations in extracellular glutamate within the nucleus accumbens. J Neurosci 2009; 29:3715-3719.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Sadri-Vakili G, Kumaresan V, Schmidt HD, et al. Cocaine-induced chromatin remodeling increases brain-derived neurotrophic factor transcription in the rat medial prefrontal cortex, which alters the reinforcing efficacy of cocaine. J Neurosci 2010; 30:11735-11744.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, Nestler EJ. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci 2010; 33:267-276.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Verheij MM, Vendruscolo LF, Caffino L, et al. Systemic delivery of a brain-penetrant TrkB antagonist reduces cocaine self-administration and normalizes TrkB signaling in the nucleus accumbens and prefrontal cortex. J Neurosci 2016; 36:8149-8159.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Dietz DM, Dietz KC, Nestler EJ, Russo SJ. Molecular mechanisms of psychostimulant-induced structural plasticity. Pharmacopsychiatry 2009; 42(Suppl. 1):S69-78.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Tada T, Sheng M. Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 2006; 16:95-101.PubMedCrossRefGoogle Scholar
  65. 65.
    Dong Y, Nestler EJ. The neural rejuvenation hypothesis of cocaine addiction. Trends Pharmacol Sci 2014; 35:374-383.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Shen HW, Toda S, Moussawi K, Bouknight A, Zahm DS, Kalivas PW. Altered dendritic spine plasticity in cocaine-withdrawn rats. J Neurosci 2009; 29:2876-2884.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Dietz DM, Sun H, Lobo MK, et al. Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons. Nat Neurosci 2012; 15:891-896.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Pascoli V, Turiault M, Luscher C. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature 2011; 481:71-75.PubMedCrossRefGoogle Scholar
  69. 69.
    Gipson CD, Kupchik YM, Shen H, Reissner KJ, Thomas CA, Kalivas PW. Relapse induced by cues predicting cocaine depends on rapid, transient synaptic potentiation. Neuron. 2013; 77:867-872.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Cahill ME, Bagot RC, Gancarz AM, et al. Bidirectional synaptic structural plasticity after chronic cocaine administration occurs through Rap1 small GTPase signaling. Neuron 2016; 89:566-582.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Luscher C, Pascoli V, Creed M. Optogenetic dissection of neural circuitry: from synaptic causalities to blue prints for novel treatments of behavioral diseases. Curr Opin Neurobiol 2015; 35:95-100.PubMedCrossRefGoogle Scholar
  72. 72.
    Huang YH, Lin Y, Mu P, et al. In vivo cocaine experience generates silent synapses. Neuron 2009; 63:40-47.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Huang YH, Schluter OM, Dong Y. Silent synapses speak up: updates of the neural rejuvenation hypothesis of drug addiction. Neuroscientist 2015; 21:451-459.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lee BR, Ma YY, Huang YH, et al. Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nat Neurosci 2013; 16:1644-1651.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Volkow ND, Morales M. The brain on drugs: from reward to addiction. Cell 2015; 162:712-725.PubMedCrossRefGoogle Scholar
  76. 76.
    Deisseroth K. Optogenetics. Nat Methods 2011; 8:26-29.PubMedCrossRefGoogle Scholar
  77. 77.
    Stuber GD, Britt JP, Bonci A. Optogenetic modulation of neural circuits that underlie reward seeking. Biol Psychiatry 2012; 71:1061-1067.PubMedCrossRefGoogle Scholar
  78. 78.
    Adamantidis AR, Tsai HC, Boutrel B, et al. Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J Neurosci 2011; 31:10829-10835.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Wolf ME. Synaptic mechanisms underlying persistent cocaine craving. Nat Rev Neurosci 2016; 17:351-365.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Chen BT, Yau HJ, Hatch C, et al. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature 2013; 496:359-362.PubMedCrossRefGoogle Scholar
  81. 81.
    Lobo MK, Covington HE, 3rd, Chaudhury D, et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 2010; 330:385-390.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Creed M, Ntamati NR, Chandra R, Lobo MK, Luscher C. Convergence of reinforcing and anhedonic cocaine effects in the ventral pallidum. Neuron 2016; 92:214-226.PubMedCrossRefGoogle Scholar
  83. 83.
    Heinsbroek JA, Neuhofer DN, Griffin WC, 3rd, et al. Loss of plasticity in the D2-accumbens pallidal pathway promotes cocaine seeking. J Neurosci 2017; 37:757-767.PubMedCrossRefGoogle Scholar
  84. 84.
    Wang L, Shen M, Yu Y, et al. Optogenetic activation of GABAergic neurons in the nucleus accumbens decreases the activity of the ventral pallidum and the expression of cocaine-context-associated memory. Int J Neuropsychopharmacol 2014; 17:753-763.PubMedCrossRefGoogle Scholar
  85. 85.
    James MH, Aston-Jones G. The ventral pallidum: proposed integrator of positive and negative factors in cocaine abuse. Neuron 2016; 92:5-8.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Stefanik MT, Kupchik YM, Brown RM, Kalivas PW. Optogenetic evidence that pallidal projections, not nigral projections, from the nucleus accumbens core are necessary for reinstating cocaine seeking. J Neurosci 2013; 33:13654-13662.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Root DH, Melendez RI, Zaborszky L, Napier TC. The ventral pallidum: subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol 2015; 130:29-70.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kalivas PW, McFarland K. Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology (Berl) 2003; 168:44-56.CrossRefGoogle Scholar
  89. 89.
    Kalivas PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 2009; 10:561-572.PubMedCrossRefGoogle Scholar
  90. 90.
    McGlinchey EM, James MH, Mahler SV, Pantazis C, Aston-Jones G. Prelimbic to accumbens core pathway is recruited in a dopamine-dependent manner to drive cued reinstatement of cocaine seeking. J Neurosci 2016; 36:8700-8711.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    LaLumiere RT, Smith KC, Kalivas PW. Neural circuit competition in cocaine-seeking: roles of the infralimbic cortex and nucleus accumbens shell. Eur J Neurosci 2012; 35:614-622.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Peters J, LaLumiere RT, Kalivas PW. Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci 2008; 28:6046-6053.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Moorman DE, James MH, McGlinchey EM, Aston-Jones G. Differential roles of medial prefrontal subregions in the regulation of drug seeking. Brain Res 2015; 1628:130-146.Google Scholar
  94. 94.
    Hanlon CA, Dowdle LT, Jones JL. Biomarkers for success: using neuroimaging to predict relapse and develop brain stimulation treatments for cocaine-dependent individuals. Int Rev Neurobiol 2016; 129:125-156.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Volkow ND, Wang GJ, Fowler JS, Tomasi D. Addiction circuitry in the human brain. Annu Rev Pharmacol Toxicol 2012; 52:321-336.PubMedCrossRefGoogle Scholar
  96. 96.
    Janicak PG, Dokucu ME. Transcranial magnetic stimulation for the treatment of major depression. Neuropsychiatr Dis Treat 2015; 11:1549-1560.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Gorelick DA, Zangen A, George MS. Transcranial magnetic stimulation in the treatment of substance addiction. Ann N Y Acad Sci 2014; 1327:79-93.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Speer AM, Kimbrell TA, Wassermann EM, et al. Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biol Psychiatry 2000; 48:1133-1141.PubMedCrossRefGoogle Scholar
  99. 99.
    Fitzgerald PB, Fountain S, Daskalakis ZJ. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol 2006; 117:2584-2596.PubMedCrossRefGoogle Scholar
  100. 100.
    Terraneo A, Leggio L, Saladini M, Ermani M, Bonci A, Gallimberti L. Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: A pilot study. Eur Neuropsychopharmacol 2016; 26:37-44.PubMedCrossRefGoogle Scholar
  101. 101.
    Bolloni C, Panella R, Pedetti M, et al. Bilateral transcranial magnetic stimulation of the prefrontal cortex reduces cocaine intake: a pilot study. Front Psychiatry 2016; 7:133.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Hanlon CA, Dowdle LT, Austelle CW, et al. What goes up, can come down: Novel brain stimulation paradigms may attenuate craving and craving-related neural circuitry in substance dependent individuals. Brain Res 2015; 1628:199-209.Google Scholar
  103. 103.
    Holtzheimer PE, Mayberg HS. Deep brain stimulation for psychiatric disorders. Annu Rev Neurosci 2011; 34:289-307.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Pierce RC, Vassoler FM. Deep brain stimulation for the treatment of addiction: basic and clinical studies and potential mechanisms of action. Psychopharmacology (Berl) 2013; 229:487-491.CrossRefGoogle Scholar
  105. 105.
    Vassoler FM, Schmidt HD, Gerard ME, et al. Deep brain stimulation of the nucleus accumbens shell attenuates cocaine priming-induced reinstatement of drug seeking in rats. J Neurosci 2008; 28:8735-8739.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Vassoler FM, White SL, Hopkins TJ, et al. Deep brain stimulation of the nucleus accumbens shell attenuates cocaine reinstatement through local and antidromic activation. J Neurosci 2013; 33:14446-14454.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Creed M, Pascoli VJ, Luscher C. Addiction therapy. Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. Science 2015; 347:659-664.PubMedCrossRefGoogle Scholar
  108. 108.
    Muller UJ, Sturm V, Voges J, et al. Nucleus accumbens deep brain stimulation for alcohol addiction—safety and clinical long-term results of a pilot trial. Pharmacopsychiatry 2016; 49:170-173.PubMedCrossRefGoogle Scholar
  109. 109.
    Kuhn J, Moller M, Treppmann JF, et al. Deep brain stimulation of the nucleus accumbens and its usefulness in severe opioid addiction. Mol Psychiatry 2014; 19:145-146.PubMedCrossRefGoogle Scholar
  110. 110.
    Goncalves-Ferreira A, do Couto FS, Rainha Campos A, Lucas Neto LP, Goncalves-Ferreira D, Teixeira J. Deep brain stimulation for refractory cocaine dependence. Biol Psychiatry 2016; 79:e87-e89.Google Scholar
  111. 111.
    Graziane NM, Sun S, Wright WJ, et al. Opposing mechanisms mediate morphine- and cocaine-induced generation of silent synapses. Nat Neurosci 2016; 19:915-925.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Koo JW, Mazei-Robison MS, Chaudhury D, et al. BDNF is a negative modulator of morphine action. Science 2012; 338:124-128.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2017

Authors and Affiliations

  • Sarah Cooper
    • 1
  • A. J. Robison
    • 1
    • 2
  • Michelle S. Mazei-Robison
    • 1
    • 2
  1. 1.Neuroscience ProgramMichigan State UniversityEast LansingUSA
  2. 2.Department of PhysiologyMichigan State UniversityEast LansingUSA

Personalised recommendations