, Volume 14, Issue 2, pp 256–264 | Cite as

Toward Personalized Targeted Therapeutics: An Overview



In neuro-oncology, there has been a movement towards personalized medicine, or tailoring treatment to the individual patient. Ideally, tumor and patient evaluations would lead to the selection of the best treatment (based on tumor characterization) and the right dosing schedule (based on patient characterization). The recent advances in the molecular analysis of glioblastoma have created optimism that personalized targeted therapy is within reach. Although our understanding of the molecular complexity of glioblastoma has increased over the years, the path to developing effective targeted therapeutic strategies is wrought with many challenges, as described in this review. These challenges include disease heterogeneity, clinical and genomic patient variability, limited number of effective treatments, clinical trial inefficiency, drug delivery, and clinical trial support and accrual. To confront these challenges, it will be imperative to devise innovative and adaptive clinical trials in order to accelerate our efforts in improving the outcomes for our patients who have been in desperate need.


Glioma Glioblastoma Targeted therapy Personalized medicine 

Supplementary material

13311_2016_496_MOESM1_ESM.pdf (1.2 mb)
ESM 1(PDF 1224 kb)


  1. 1.
    Druker, B.J., et al., Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med, 2001. 344(14): p. 1038-1042.CrossRefPubMedGoogle Scholar
  2. 2.
    Stupp, R., et al., Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med, 2005. 352(10): p. 987-996.CrossRefPubMedGoogle Scholar
  3. 3.
    Gilbert, M.R., et al., Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol, 2013. 31(32): p. 4085-4091.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wong, E.T., et al., Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol, 1999. 17(8): p. 2572.CrossRefPubMedGoogle Scholar
  5. 5.
    Lamborn, K.R., et al., Progression-free survival: an important end point in evaluating therapy for recurrent high-grade gliomas. Neuro Oncol, 2008. 10(2): p. 162-170.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Norden, A., et al., Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology, 2008. 70(10): p. 779-787.CrossRefPubMedGoogle Scholar
  7. 7.
    Yung, W.K., et al., A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br J Cancer, 2000. 83(5): p. 588-593.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gilbert, M.R., et al., A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med, 2014. 370(8): p. 699-708.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chinot, O.L., et al., Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med, 2014. 370(8): p. 709-722.CrossRefPubMedGoogle Scholar
  10. 10.
    Stupp, R., et al., Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol, 2014. 15(10): p. 1100-1108.CrossRefPubMedGoogle Scholar
  11. 11.
    Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008. 455(7216): p. 1061-1068.Google Scholar
  12. 12.
    Kim, J., et al., Spatiotemporal evolution of the primary glioblastoma genome. Cancer Cell, 2015. 28(3): p. 318-328.CrossRefPubMedGoogle Scholar
  13. 13.
    Bonavia, R., et al., Heterogeneity maintenance in glioblastoma: a social network. Cancer Res, 2011. 71(12): p. 4055-4060.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sottoriva, A., et al., Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A, 2013. 110(10): p. 4009-4014.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Verhaak, R.G., et al., Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 2010. 17(1): p. 98-110.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Furnari, F.B., et al., Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev, 2007. 21(21): p. 2683-2710.CrossRefPubMedGoogle Scholar
  17. 17.
    Phillips, H.S., et al., Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell, 2006. 9(3): p. 157-173.CrossRefPubMedGoogle Scholar
  18. 18.
    Brennan, C.W., et al., The somatic genomic landscape of glioblastoma. Cell, 2013. 155(2): p. 462-477.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Goodenberger, M.L. and R.B. Jenkins, Genetics of adult glioma. Cancer Genet, 2012. 205(12): p. 613-621.CrossRefPubMedGoogle Scholar
  20. 20.
    Bedard, P.L., et al., Tumour heterogeneity in the clinic. Nature, 2013. 501(7467): p. 355-364.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Patel, A.P., et al., Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science, 2014. 344(6190): p. 1396-1401.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhou, B.B., et al., Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov, 2009. 8(10): p. 806-823.CrossRefPubMedGoogle Scholar
  23. 23.
    Liu, J., et al., Glioblastoma tumor initiating cells: therapeutic strategies targeting apoptosis and microRNA pathways. Curr Mol Med, 2013. 13(3): p. 352-357.PubMedGoogle Scholar
  24. 24.
    Kim, H., et al., Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res, 2015. 25(3): p. 316-327.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Slamon, D., et al., Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med, 2011. 365(14): p. 1273-1283.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Iyer, L., et al., Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest, 1998. 101(4): p. 847-854.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lu, C.Y., et al., Clinical implication of UGT1A1 promoter polymorphism for irinotecan dose escalation in metastatic colorectal cancer patients treated with bevacizumab combined with FOLFIRI in the first-line setting. Transl Oncol, 2015. 8(6): p. 474-479.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Armstrong, T.S., et al., Risk analysis of severe myelotoxicity with temozolomide: the effects of clinical and genetic factors. Neuro Oncol, 2009. 11(6): p. 825-832.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hegi, M.E., et al., MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med, 2005. 352(10): p. 997-1003.CrossRefPubMedGoogle Scholar
  30. 30.
    Rapkins, R.W., et al., The MGMT promoter SNP rs16906252 is a risk factor for MGMT methylation in glioblastoma and is predictive of response to temozolomide. Neuro Oncol, 2015. 17(12): p. 1589-1598.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nathanson, D.A., et al., Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science, 2014. 343(6166): p. 72-76.CrossRefPubMedGoogle Scholar
  32. 32.
    Stommel, J.M., et al., Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science, 2007. 318(5848): p. 287-290.CrossRefPubMedGoogle Scholar
  33. 33.
    Pao, W. and J. Chmielecki, Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer, 2010. 10(11): p. 760-774.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Brandes, A.A., et al., Epidermal growth factor receptor inhibitors in neuro-oncology: hopes and disappointments. Clin Cancer Res, 2008. 14(4): p. 957-960.CrossRefPubMedGoogle Scholar
  35. 35.
    Inda, M.M., et al., Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev, 2010. 24(16): p. 1731-1745.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Vivanco, I., et al., Differential sensitivity of glioma- versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors. Cancer Discov, 2012. 2(5): p. 458-471.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wood, E.R., et al., A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res, 2004. 64(18): p. 6652-6659.CrossRefPubMedGoogle Scholar
  38. 38.
    Karaman, M.W., et al., A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol, 2008. 26(1): p. 127-132.CrossRefPubMedGoogle Scholar
  39. 39.
    Reardon, D.A., et al., A phase I/II trial of pazopanib in combination with lapatinib in adult patients with relapsed malignant glioma. Clin Cancer Res, 2013. 19(4): p. 900-908.CrossRefPubMedGoogle Scholar
  40. 40.
    DiMasi, J.A. and H.G. Grabowski, Economics of new oncology drug development. J Clin Oncol, 2007. 25(2): p. 209-216.CrossRefPubMedGoogle Scholar
  41. 41.
    Murgo, A.J., et al., Designing phase 0 cancer clinical trials. Clin Cancer Res, 2008. 14(12): p. 3675-3682.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Herbst, R.S., et al., Lung Master Protocol (Lung-MAP)-a biomarker-driven protocol for accelerating development of therapies for squamous cell lung cancer: SWOG S1400. Clin Cancer Res, 2015. 21(7): p. 1514-1524.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kim, E.S., et al., The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov, 2011. 1(1): p. 44-53.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Barker, A.D., et al., I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther, 2009. 86(1): p. 97-100.CrossRefPubMedGoogle Scholar
  45. 45.
    Kaplan, R., et al., Evaluating many treatments and biomarkers in oncology: a new design. J Clin Oncol, 2013. 31(36): p. 4562-4568.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Conley, B.A. and J.H. Doroshow, Molecular analysis for therapy choice: NCI MATCH. Semin Oncol, 2014. 41(3): p. 297-299.CrossRefPubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2016

Authors and Affiliations

  1. 1.Department of Neuro-OncologyUniversity of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Neuro-Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations