Skip to main content

Advertisement

Log in

Microchemical contaminants as forming agents of anthropogenic soils

  • Review
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

Within historically accepted, major soil-forming major processes, the role of chemicals as a human-induced factor was neglected until the middle of the last century. Over the years, however, anthropogenic chemicals have emerged and are being released on the land surface in large amounts. Irreversible changes in the matrix of soil and soil constituents may occur as a result of both intentional and accidental release of anthropogenic chemicals, as well as a byproduct of human activity. After presenting an historical evolution of the discussion on soil-forming factors, we focus here on human impacts and examine the abiotic role of anthropogenic microchemical contaminant (AMCC) interactions with soils at the molecular level. Selected examples of microchemical contaminants, including heavy metals, pesticides, hydrocarbons, and engineered nanomaterials, are presented to demonstrate that AMCCs—even at low concentration—may irreversibly alter the matrix of the soil and soil constituents and lead to the formation of anthropogenic soils with different properties than those of the pristine soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reprinted from Ogawa et al., Intercalation of a cationic azobenzene into montmorillonite Applied Clay Science, 22, 179–185, Copyright (2003), with permission from Elsevier

Fig. 3

Adapted with permission from Yang et al., Interactions of humic acid with nanosized inorganic oxides. Langmuir 25, 3571–3576. Copyright (2009) American Chemical Society and from Philippe and Schaumann (2014) adapted with permission from Interactions of dissolved organic matter with natural and engineered inorganic colloids: A review. Environmental Science and Technology 48, 8946–8962 Copyright (2014) American Chemical Society

Fig. 4

Reprinted from Salomons (1995). Long-term strategies for handling contaminated sites and large scale areas. In Salomons W. and Stigliani W.M. Biogeodynamics of Pollutants in Soils and Sediments. Springer pp 1–30, with permission of Springer

Similar content being viewed by others

References

  • Adams, R.H., F.J. Guzmán Osorio, and J. Zavala Cruz. 2008. Water repellency in oil contaminated sandy and clayey soils. Environmental Science and Technology 5: 445–454. doi:10.1007/BF03326040.

    CAS  Google Scholar 

  • Amundson, R., and H. Jenny. 1991. The place of humans in the state factor theory of ecosystems and their soils. Soil Science 151: 99–109. doi:10.1097/00010694-199101000-00012.

    Article  Google Scholar 

  • Arab, D., and P. Pourafshary. 2013. Nanoparticles-assisted surface charge modification of the porous medium to treat colloidal particles migration induced by low salinity water flooding. Colloids and Surfaces A 436: 803–814. doi:10.1016/j.colsurfa.2013.08.022.

    Article  CAS  Google Scholar 

  • Avanasi, R., W.A. Jackson, B. Sherwin, J.F. Mudge, and T.D. Anderson. 2014. C60 fullerene soil sorption, biodegradation and plant uptake. Environmental Science and Technology 48: 2792–2797.

    Article  CAS  Google Scholar 

  • Barnhisel, R.I., and P.M. Bertsch. 1989. Chlorites and hydroxy interlayered vermiculite and smectite. In Minerals in Soil Environments, 2nd ed, ed. J.B. Dixon, and S.B. Weed, 729–788. Madison, WI: Soil Science Society of America.

    Google Scholar 

  • Barriuso, E., P. Benoit, and I.G. Dubus. 2008. Formation of pesticide nonextractable (bound) residues in soil: magnitude, controlling factors and reversibility. Environmental Science and Technology 42: 1845–1854. doi:10.1021/es7021736.

    Article  CAS  Google Scholar 

  • Bayard, R., L. Barna, B. Mahjoub, and R. Gourdon. 2000. Influence of the presence of PAHs and coal tar on naphthalene sorption in soils. Journal of Contaminant Hydrology 46: 61–80.

    Article  CAS  Google Scholar 

  • Ben-Moshe, T., S. Frenk, I. Dror, D. Minz, and B. Berkowitz. 2013. Effects of metal oxide nanoparticles on soil properties. Chemosphere 90: 640–646. doi:10.1016/j.chemosphere.2012.09.018.

    Article  CAS  Google Scholar 

  • Bergaya, F., and G. Lagaly. 2001. Surface modification of clay minerals. Applied Clay Science 19: 1–3. doi:10.1016/S0169-1317(01)00063-1.

    Article  CAS  Google Scholar 

  • Berkowitz, B., I. Dror, and B. Yaron. 2014. Contaminant geochemistry. Berlin: Springer.

    Book  Google Scholar 

  • Bertsch, P.M., and D.B. Hunter. 1998. Elucidating fundamental mechanisms in soil and environmental chemistry: the role of advanced analytical, spectroscopic, and microscopic methods. Future Prospects for Soil Chemistry 55: 103–122. doi:10.2136/sssaspecpub55.c5.

    CAS  Google Scholar 

  • Bosetto, M., P. Arfaioli, and P. Fusi. 1993. Interactions of alachlor with homoionic montmorillonites. Soil Science 155: 105–113. doi:10.1097/00010694-199302000-00004.

    Article  CAS  Google Scholar 

  • Brady, N.C., and R.R. Weil. 2007. The nature and properties of soils, 14th ed. New York: Pearson.

    Google Scholar 

  • Bradl, H.B. 2004. Adsorption of heavy metals ions on soils and soil constituents. Colloid and Interface Science 277: 1–17.

    Article  CAS  Google Scholar 

  • Capra, G.F., A. Ganga, E. Grilli, S. Vacca, and A. Buondonno. 2015. A review on anthropogenic soils from a worldwide perspective. Soils and Sediments 15: 1602–1618. doi:10.1007/s11368-015-1110-x.

    Article  CAS  Google Scholar 

  • Cavallaro, N., and M.B. McBride. 1984. Zinc and Copper sorption and fixation by an acid soil clay: Effect of selective dissolutions. Soil Science Society of America Journal 48: 1050–1054. doi:10.2136/sssaj1984.03615995004800050020x.

    Article  CAS  Google Scholar 

  • Certini, G. 2014. Fire as soil forming factor. Ambio 43: 191–195.

    Article  Google Scholar 

  • Certini, G., and R. Scalenghe. 2011. Anthropogenic soils are the golden spike for the Anthropocene. The Holocene 8: 1269–1274. doi:10.1177/0959683611408454.

    Article  Google Scholar 

  • Certini, G., R. Scalenghe, and W. Woods. 2013. The impact of warfare on the soil environment. Earth Science Reviews 127: 1–15.

    Article  CAS  Google Scholar 

  • Chefetz, B., A.P. Deshmukh, P.G. Hatcher, and E.A. Guthrie. 2000. Pyrene sorption by natural organic matter. Environmental Science and Technology 34: 2925–2930. doi:10.1021/es9912877.

    Article  CAS  Google Scholar 

  • Chefetz, B., and B. Xing. 2009. Relative role of aliphatic and aromatic moieties as sorption domains for organic compounds: A review. Environmental Science and Technology 43: 1680–1688. doi:10.1021/es803149u.

    Article  CAS  Google Scholar 

  • Cheng, X., A.T. Kan, and M.B. Tomson. 2005. Study of C60 transport in porous media and the effect of sorbed C60 on naphthalene transport. Materials Research 20: 3244–3254. doi:10.1557/jmr.2005.0402.

    Article  CAS  Google Scholar 

  • Christl, I., C.J. Milne, D.G. Kinniburgh, and R. Kretzschmar. 2001. Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 2. Metal binding. Environmental Science and Technology 35: 2512–2517. doi:10.1021/es0002520.

    Article  CAS  Google Scholar 

  • Cornelis, G., K. Hund-Rinke, T. Kuhlbusch, N. van den Brink, and C. Nickel. 2014. Fate and bioavailability of engineered nanoparticles in soils: a review. Critical Reviews in Environmental Science and Technology 44: 2720–2764. doi:10.1080/10643389.2013.829767.

    Article  CAS  Google Scholar 

  • Darwin, C. 1881. The formation of vegetable mold through the actions of worms, with observations on their habits. London: John Murray.

    Book  Google Scholar 

  • Dokuchaev, V.V. 1883. Russian chernozen. In Selected works of VV Dokuchaev 1 1948 (English trans: Jerusalem Dokuchaev VV (1883) Russian Chernozem). Jerusalem: Israel Program for Scientific Translation.

  • Dokuchaev, V.V. 1899. A contribution to the theory of natural zones: Horizontal and vertical soil zones. St. Petersburg: Mayor’s Office Press (in Russian).

    Google Scholar 

  • Dror, I., B. Yaron, and B. Berkowitz. 2015. Abiotic soil changes induced by engineered nanomaterials: A critical review. Journal of Contaminant Hydrology 181: 3–16. doi:10.1016/j.jconhyd.2015.04.004.

    Article  CAS  Google Scholar 

  • Dudal, R. 2005. The sixth factor of soil formation. Eurasian Soil Science 38: S60–S65.

    Google Scholar 

  • Fortner, J.D., C. Solenthaler, J.B. Hughes, A.M. Puzrin, and M. Plötze. 2012. Interactions of clay minerals and a layered double hydroxide with water stable, nano scale fullerene aggregates (nC60). Applied Clay Science 55: 36–43. doi:10.1016/j.clay.2011.09.014.

    Article  CAS  Google Scholar 

  • Gevao, B., K.T. Semple, and K.C. Jones. 2000. Bound pesticide residues in soils: A review. Environmental Pollution 108: 3–14. doi:10.1016/S0269-7491(99)00197-9.

    Article  CAS  Google Scholar 

  • Ge, X., Y. Zhou, C. Lü, and H. Tang. 2006. AFM study on the adsorption and aggregation behavior of dissolved humic substances on mica. Science in China, Series B: Chemistry 49: 256–266. doi:10.1007/s11426-006-0256-1.

    Article  CAS  Google Scholar 

  • Gil-Díaz, M., A. Pérez-Sanz, M. Ángeles Vicente, and M. Carmen Lobo. 2014. Immobilisation of Pb and Zn in soils using stabilised zero-valent iron nanoparticles: effects on soil properties: Metal soil immobilisation using zero-valent iron nanoparticles. Clean: Soil, Air, Water 42: 1776–1784. doi:10.1002/clen.201300730.

    Google Scholar 

  • Gournis, D., V. Georgakilas, M.A. Karakassides, T. Bakas, K. Kordatos, M. Prato, M. Fanti, and F. Zerbetto. 2004. Incorporation of fullerene derivatives into smectite clays: A new family of organic–inorganic nanocomposites. Journal of the American Chemical Society 126: 8561–8568. doi:10.1021/ja049237b.

    Article  CAS  Google Scholar 

  • Hass, A., U. Mingelgrin, and P. Fine. 2010. Heavy metals in soils irrigated with wastewater. In Treated wastewater in agriculture, ed. G.J. Levy, P. Fine, and A. Bar-Tal, 247–285. Hoboken: Wiley-Blackwell.

    Chapter  Google Scholar 

  • Hilgard, E.W. 1906. Soils: Their formation, properties, composition and relation to climate and plant growth in humid and arid regions. New York: Macmillan.

    Google Scholar 

  • Inbar, A., M. Ben-Hur, M. Sternberg, and M. Lado. 2015. Using polyacrylamide to mitigate post-fire soil erosion. Geoderma 239–240: 107–114.

    Article  Google Scholar 

  • Jacquat, O., A. Voegelin, and R. Kretzschmar. 2009. Local coordination of Zn in hydroxy-interlayered minerals and implications for Zn retention in soils. Geochimica et Cosmochimica Acta 73: 348–363. doi:10.1016/j.gca.2008.10.026.

    Article  CAS  Google Scholar 

  • Jenny, H. 1941. Factors of soil formation. New York: McGraw-Hill NY.

    Google Scholar 

  • Jenny, H. 1961. Derivation of state factor equations of soils and ecosystems. Soil Science Society of America Journal 25: 385. doi:10.2136/sssaj1961.03615995002500050023x.

    Article  Google Scholar 

  • Johnson, D.L., and R.J. Schaetzl. 2015. Differing views of soil and pedogenesis by two masters: Darwin and Dokuchaev. Geoderma 237–238: 176–189. doi:10.1016/j.geoderma.2014.08.020.

    Article  Google Scholar 

  • Jozja, N., P. Baillif, J.C. Touray, F. Muller, and C. Clinard. 2006. Incidence of lead uptake on the microstructure of a (Mg, Ca)-bearing bentonite (Prrenjas, Albania). European Journal of Mineralogy 18: 361–368. doi:10.1127/0935-1221/2006/0018-0361.

    Article  CAS  Google Scholar 

  • Kang, S., and B. Xing. 2005. Phenanthrene sorption to sequentially extracted soil humic acids and humins. Environmental Science and Technology 39: 134–140.

    Article  CAS  Google Scholar 

  • Kelepertzis, E. 2014. Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma 221–222: 82–90.

    Article  Google Scholar 

  • Klavins, M., and L. Ansone. 2010. Study of interaction between humic acids and fullerene C60 using fluorescence quenching approach. Ecological Chemistry and Engineering 17: 351–362.

    CAS  Google Scholar 

  • Lagaly, G. 1986. Interaction of alkylamines with different types of layered compounds. Solid State Ionics 22: 43–51. doi:10.1016/0167-2738(86)90057-3.

    Article  CAS  Google Scholar 

  • Lieber, C.M., and C.C. Chen. 2009. Preparation of fullerene and fullerene based metalics. Advances in Solid State Physics 48: 109–147.

    Google Scholar 

  • Lishtvan, I.I., F.N. Kaputsky, Y.G. Yanuta, A.M. Abramets, V.P. Strigutsky, and E.V. Kachanova. 2006. Humic acids: Interaction with metal ions, features of structure and properties of metal humic complexes. Chemistry for Sustainable Development 14: 367–373.

    Google Scholar 

  • López-Periago, J.E., M. Arias-Estévez, J.C. Nóvoa-Muñoz, D. Fernández-Calviño, B. Soto, C. Pèrez-Novo, and J. Simal-Gándara. 2008. Copper retention kinetics in acid soils. Soil Science Society of America Journal 72: 63–72. doi:10.2136/sssaj2006.0079.

    Article  Google Scholar 

  • Mainwaring, K.A., C.P. Morley, S.H. Doerr, P. Douglas, C.T. Llewellyn, G. Llewellyn, I. Matthews, and B.K. Stein. 2004. Role of heavy polar organic compounds for water repellency of sandy soils. Environmental Chemistry Letters 2: 35–39. doi:10.1007/s10311-004-0064-9.

    Article  CAS  Google Scholar 

  • Mamy, L., and E. Barriuso. 2007. Desorption and time-dependent sorption of herbicides in soils. European Journal of Soil Science 58: 174–187. doi:10.1111/j.1365-2389.2006.00822.x.

    Article  CAS  Google Scholar 

  • McBride, M.B. 1989. Reactions controlling heavy metal solubility in soils. In Advances in soil science, ed. B.A. Stewart, 1–56. New York: Springer.

    Chapter  Google Scholar 

  • Mehrotra, V., E.P. Giannelis, R.F. Ziolo, and P. Rogalskyj. 1992. Intercalation of ethylenediamine functionalized buckminsterfullerene in mica-type silicates. Chemistry of Materials 4: 20–22. doi:10.1021/cm00019a008.

    Article  CAS  Google Scholar 

  • Nasser, A., M. Gal, Z. Gerstl, U. Mingelgrin, and S. Yariv. 1997. Adsorption of alachlor by montmorillonites. Journal of Thermal Analysis 50: 257–268. doi:10.1007/BF01979566.

    Article  CAS  Google Scholar 

  • Nebbioso, A., and A. Piccolo. 2013. Molecular characterization of dissolved organic matter (DOM): A critical review. Analytical and Bioanalytical Chemistry 405: 109–124. doi:10.1007/s00216-012-6363-2.

    Article  CAS  Google Scholar 

  • Ogawa, M., T. Ishii, N. Miyamoto, and K. Kuroda. 2003. Intercalation of a cationic azobenzene into montmorillonite. Applied Clay Science 22: 179–185.

    Article  CAS  Google Scholar 

  • Oren, A., and B. Chefetz. 2005. Sorption–desorption behavior of polycyclic aromatic hydrocarbons in upstream and downstream river sediments. Chemosphere 61: 19–29. doi:10.1016/j.chemosphere.2005.03.021.

    Article  CAS  Google Scholar 

  • Orsi, M. 2014. Molecular dynamics simulation of humic substances. Chemical and Biological Technologies in Agriculture 1: 1–14. doi:10.1186/s40538-014-0010-4.

    Article  Google Scholar 

  • Philippe, A., and G.E. Schaumann. 2014. Interactions of dissolved organic matter with natural and engineered inorganic colloids: A review. Environmental Science and Technology 48: 8946–8962.

    Article  CAS  Google Scholar 

  • Pignatello, J.J., and B. Xing. 1996. Mechanisms of slow sorption of organic chemicals to natural particles. Environmental Science and Technology 30: 1–11. doi:10.1021/es940683g.

    Article  CAS  Google Scholar 

  • Prost, R., Z. Gerstl, B. Yaron, J. Chaussidon. 1977. Infrared studies of parathion attapulgite interactions. Special Publication Agricultural Research Organization, Volcani Cent. Div. Sci. Publ., 27–32.

  • deB Richter, D. 2007. Humanity’s transformation of earth’s soil: Pedology’s new frontier. Soil Science 172: 957–967. doi:10.1097/ss.0b013e3181586bb7.

    Article  CAS  Google Scholar 

  • deB Richter, D., and D.H. Yaalon. 2012. “The changing model of soil” revisited. Soil Science Society of America Journal 76: 766. doi:10.2136/sssaj2011.0407.

    Article  CAS  Google Scholar 

  • Romić, M., L. Matijević, H. Bakić, and D. Romić. 2014. Copper accumulation in vineyard soils: distribution, fractionation and bioavailability assessment. In Environmental risk assessment of soil contamination, ed. M.C. Hernandez Soriano. Rijeka: InTech.

    Google Scholar 

  • Roy, J.L., W.B. McGill, H.A. Lowen, and R.L. Johnson. 2003. Relationship between water repellency and native and petroleum-derived organic carbon in soils. Journal of Environmental Quality 32: 583–590.

    Article  CAS  Google Scholar 

  • Salomons, W. 1995. Long term strategies for handling contaminated sites and large scale areas. In Biogeodynamics of pollutants in soils and sediments, ed. W. Salomons, and W.M. Stigliani, 1–30. Berlin: Springer.

    Chapter  Google Scholar 

  • Saltzman, S., and S. Yariv. 1976. Infrared and X-ray study of parathion-montmorillonite sorption complexes. Soil Science Society of America Journal 40: 34. doi:10.2136/sssaj1976.03615995004000010013x.

    Article  CAS  Google Scholar 

  • Sanchez-Martin, M.J., M.S. Rodriguez-Cruz, M.S. Andrades, and M. Sanchez-Camazano. 2006. Efficiency of different clay minerals modified with a cationic surfactant in the adsorption of pesticides: Influence of clay type and pesticides hydrophobicity. Applied Clay Science 31: 216–228.

    Article  CAS  Google Scholar 

  • Sander, M., Y. Lu, and J.J. Pignatello. 2005. A thermodynamically based method to quantify true sorption hysteresis. Journal of Environmental Quality 34: 1063. doi:10.2134/jeq2004.0301.

    Article  CAS  Google Scholar 

  • Sander, M., Y. Lu, and J.J. Pignatello. 2006. Conditioning-annealing studies of natural organic matter solids linking irreversible sorption to irreversible structural expansion. Environmental Science and Technology 40: 170–178. doi:10.1021/es0506253.

    Article  CAS  Google Scholar 

  • Schlegel, M.L.K., L. Charlet, and A. Manceau. 1999. Sorption of metal ions on clay minerals. Journal of Colloid and Interface Science 220: 392–405. doi:10.1006/jcis.1999.6538.

    Article  CAS  Google Scholar 

  • Sedlmair, J., S.C. Gleber, S. Wirick, P. Guttmann, and J. Thieme. 2012. Interaction between carbon nanotubes and soil colloids studied with X-ray spectromicroscopy. Chem. Geol. 329: 32–41. doi:10.1016/j.chemgeo.2011.08.009.

    Article  CAS  Google Scholar 

  • Selim, H.M. 2013. Transport and retention of heavy metal in soils: Competitive sorption. Advances in Agronomy 119: 275–308.

    Article  CAS  Google Scholar 

  • Senesi, N., and Y. Chen. 1989. Interactions of toxic organic chemicals with humic substances. In Toxic organic chemicals in porous media, ecological studies, ed. Z. Gerstl, Y. Chen, U. Mingelgrin, and B. Yaron, 37–90. Berlin: Springer.

    Chapter  Google Scholar 

  • Senesi, N., C. Testini, and T.M. Miano. 1987. Interaction mechanisms between humic acids of different origin and nature and electron donor herbicides: A comparative IR and ESR study. Organic Geochem. 11: 25–30. doi:10.1016/0146-6380(87)90048-9.

    Article  CAS  Google Scholar 

  • Sojka, R.E., D.L. Bjorneberg, J.A. Entry, R.D. Lentz, and W.J. Orts. 2007. Polyacrylamide in agriculture and environmental land management. In Advances in agronomy, ed. D.L. Sparks, 75–162. Cambridge: Academic Press.

    Google Scholar 

  • Spurgeon, D.J., S.P. Hopkin, and D.T. Jones. 1994. Effects of cadmium, copper, lead and zinc on growth, reproduction and survival of the earthworm Eisenia fetida (savigny): Assessing the environmental impact of point-source metal contamination in terrestrial ecosystems. Environmental Pollution 84: 123–130.

    Article  CAS  Google Scholar 

  • Strawn, D.C., and D.L. Sparks. 1999. The use of XAFS to distinguish between inner- and outer-sphere lead adsorption complexes on montmorillonite. Journal of Colloid and Interface Science 216: 257–269. doi:10.1006/jcis.1999.6330.

    Article  CAS  Google Scholar 

  • Sullivan, J.D., and G.T. Felbeck. 1968. A study of the interaction of s-triazine herbicides with humic acids from three different soils. Soil Science 106: 42–52. doi:10.1097/00010694-196807000-00007.

    Article  CAS  Google Scholar 

  • Tu, H.L., T.B. He, X.H. Lu, Y.C. Lang, and L.B. Li. 2013. Accumulation of trace elements in paddy topsoil of the Wudang County, Southwest China: Parent materials and anthropogenic controls. Environmental Earth Sciences 70: 131–137.

    Article  Google Scholar 

  • Wallach, R., and E.R. Graber. 2007. Infiltration into effluent irrigation-induced repellent soils and the dependence of repellency on ambient relative humidity. Hydrological Processes 21: 2346–2355. doi:10.1002/hyp.6748.

    Article  Google Scholar 

  • Wang, D., L. Ge, J. He, W. Zhang, D.P. Jaisi, and D. Zhou. 2014. Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol. Journal of Contaminant Hydrology 164: 35–48. doi:10.1016/j.jconhyd.2014.05.007.

    Article  CAS  Google Scholar 

  • Weber, J.B., and S.B. Weed. 1968. Adsorption and Desorption of diquat, paraquat, and prometone by montmorillonitic and kaolinitic clay minerals. Soil Science Society of America Journal 32: 485. doi:10.2136/sssaj1968.03615995003200040020x.

    Article  CAS  Google Scholar 

  • Wyszkowska, J., J. Kucharski, and W. Lajszner. 2006. The effects of copper on soil biochemical properties and its interaction with other heavy metals. Polish Journal of Environmental Studies 15: 927–934.

    CAS  Google Scholar 

  • Yaalon, D.H., and B. Yaron. 1966. Framework for man-made soil changes-an outline of metapedogenesis. Soil Science 102: 272–277.

    Article  Google Scholar 

  • Yang, K., D. Lin, and B. Xing. 2009. Interactions of humic acid with nanosized inorganic oxides. Langmuir 25: 3571–3576. doi:10.1021/la803701b.

    Article  CAS  Google Scholar 

  • Yariv, S., and H. Cross. 2002. Organo-clay complexes and interactions. New York: Marcel Dekker.

    Google Scholar 

  • Yaron, B., I. Dror, and B. Berkowitz. 2008. Contaminant-induced irreversible changes in properties of the soil-vadose-aquifer zone: an overview. Chemosphere 71: 1409–1421. doi:10.1016/j.chemosphere.2007.11.045.

    Article  CAS  Google Scholar 

  • Yaron, B., I. Dror, and B. Berkowitz. 2009. Chemical contaminants as factor of soil-subsurface metagenesis. IUSS Bulletin 115: 11–12.

    Google Scholar 

  • Yaron, B., I. Dror, and B. Berkowitz. 2010. Contaminant geochemistry—A new perspective. Naturwissenschaften 97: 1–17. doi:10.1007/s00114-009-0592-z.

    Article  CAS  Google Scholar 

  • Yaron, B., I. Dror, and B. Berkowitz. 2012. Soil-subsurface change. Berlin: Springer.

    Book  Google Scholar 

  • Yaron, B., I. Dror, and B. Berkowitz. 2016. Engineered nanomaterials as a potential metapedogenetic factor: A perspective. Catena. doi:10.1016/j.catena.2016.02.003.

    Google Scholar 

  • Zhang G.L., and L.M. Chen. 2010. Soil genesis along a paddy soil chronosequence in a millennium scale. Presented at the Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia, 1-6 August 2010. Symposium 1.3.1 Pedogenesis: ratio and ranges of influence, International Union of Soil Sciences (IUSS), c/o Institut für Bodenforschung, Universität für Bodenkultur, 88–91.

  • Zhang, M., Y. Wang, D. Zhao, and G. Pan. 2010. Immobilization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), and magnetite (Fe3O4) particles. Chinese Science Bulletin 55: 365–372. doi:10.1007/s11434-009-0703-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Israel Water Authority (Grant No. 4500687211) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishai Dror.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dror, I., Yaron, B. & Berkowitz, B. Microchemical contaminants as forming agents of anthropogenic soils. Ambio 46, 109–120 (2017). https://doi.org/10.1007/s13280-016-0804-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-016-0804-7

Keywords

Navigation