Skip to main content

Advertisement

Log in

A morphologically robust chaotic map based approach to embed patient’s confidential data securely in non-QRS regions of ECG signal

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

In e-healthcare paradigm, the physiological signals along with patient’s personal information need to be transmitted to remote healthcare centres. Before sharing this sensitive information over the unsecured channel, it is prerequisite to protect it from unauthorised access. The proposed method explores ECG signal as the cover signal to hide patient’s personal information without disturbing its diagnostic features. Chaotic maps are used to randomly select the embedding locations in the non-QRS region while excluding the sensitive QRS region of ECG train. Optimum Location Selection algorithm has been designed to select the embedding locations in non-QRS embedding region. The proposed algorithm is thoroughly examined and the distortion is measured in terms of statistical parameters and clinical measures such as PRD, PRDN, PRD1024, PSNR, SNR, MSE, MAE, KL-Divergence, WWPRD and WEDD. The robustness of the algorithm is verified using the parameters such as key space and key sensitivity. The implementation has been extensively tested on all the 48 records of the standard MIT-BIH Arrhythmia database, abnormal databases [CU-VT, BIDMC-CHF and PTB (leads I, II and III)] and self-recorded data of 20 subjects. The algorithm yields average PRD, MSE, KL-Divergence, PSNR, WWPRD and WEDD of 4.7 × 10−3, 1.13 × 10−5, 1.29 × 10−5, 50.28, 0.15 and 0.04 at an average maximum EC of 0.45(96876 bits) on MIT-BIH Arrhythmia database and 0.016, 3.38 × 10−5, 1.8 × 10−4, 46.03, 0.13 and 0.03 respectively at an average maximum EC of 0.47 (102571 bits) on self-recorded data which clearly reveals the competency of the proposed algorithm in comparison with the other state of the art ECG steganography approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Goceri E, Songul C (2018) Biomedical information technology: Image based computer aided diagnosis systems. In International conference on advanced technologies, Antalya, pp 132

  2. Goceri E, Songul C (2018) Mobile health technologies for patients with mental illness. In International conference on advanced technologies, Antalya, pp. 146

  3. English A, Summers R, Lewis J, Coleman C (2015) Confidentiality, third-party billing & the health insurance claims process: implications for title X. Accessed 11 Nov 2015

  4. Subhedar MS, Mankar VH (2014) Current status and key issues in image steganography: a survey. Comput Sci Rev 13–14:95–113

    Article  Google Scholar 

  5. Pandey A, Singh B, Saini BS, Sood N (2016) A joint application of optimal threshold based discrete cosine transform and ASCII encoding for ECG data compression with its inherent encryption. Australas Phys Eng Sci Med 39:833–855

    Article  PubMed  Google Scholar 

  6. Johnson NF, Jajodia S (1998) Exploring steganography: seeing the unseen. Computers 31(2):26–34

    Article  Google Scholar 

  7. Nambakhsh MS, Ahmadian A, Zaidi H (2011) A contextual based double watermarking of PET images by patient ID and ECG signal. Comput Methods Programs Biomed 104(3):418–425

    Article  PubMed  Google Scholar 

  8. Parah SA, Ahad F, Sheikh JA, Bhat GM (2017) Hiding clinical information in medical images: a new high capacity and reversible data hiding technique. J Biomed Inform 66:214–230

    Article  PubMed  Google Scholar 

  9. Ibaida A, Khalil I, Al-Shammary D (2010) Embedding patients confidential data in ECG signal for healthcare information systems. In: 32nd international conference of IEEE Buenos Aires, Argentina, pp. 3891–3894

  10. Ibaida A, Khalil I (2013) Wavelet-based ECG steganography for protecting patient confidential information in point-of-care systems. IEEE Trans Biomed Eng 60(12):3322–3330

    Article  PubMed  Google Scholar 

  11. Chen ST, Guo YJ, Huang HN, Kung WM, Tseng KK, Tu SY (2014) Hiding patients confidential data in the ECG signal viaa transform-domain quantization scheme. J Med Syst 38(6):1–8

    CAS  Google Scholar 

  12. Jero SE, Ramu P, Ramakrishnan S (2014) Discrete wavelet transform and singular value decomposition based ECG steganography for secured patient information transmission. J Med Syst 38:132

    Article  Google Scholar 

  13. Jero SE, Ramu P, Ramakrishnan S (2015) ECG steganography using curvelet transform. Biomed Signal Process Control 22:161–169

    Article  Google Scholar 

  14. Jero SE, Ramu P, Ramakrishnan S (2016) Imperceptibility—robustness trade-off studies for ECG steganography using continuous ant colony optimization. Expert Syst Appl 49:123–135

    Article  Google Scholar 

  15. Yang CY, Wang WF (2016) Effective electrocardiogram steganography based on coefficient alignment. J Med Syst 40:66

    Article  CAS  PubMed  Google Scholar 

  16. Pandey A, Saini BS, Singh B, Sood N (2017) An integrated approach using chaotic map & sample value difference method for electrocardiogram steganography and OFDM based secured patient information transmission. J Med Syst 41:187

    Article  PubMed  Google Scholar 

  17. Malmivuo J, Plonsey R (1995) Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, New York

    Book  Google Scholar 

  18. Poole JE, Singh JP, Birgersdotter-Green U (2016) QRS duration or QRS morphology: what really matters in cardiac resynchronization therapy. J Am Coll Cardiol 67(9):1104–1117

    Article  PubMed  Google Scholar 

  19. Zhou Y, Bao L, Chang CLP (2014) A new 1D chaotic system for image encryption. Sig Process 97:172–182

    Article  Google Scholar 

  20. Hua Z, Zhou Y, Pun CM, Chang CLP (2015) 2D sine logistic modulation map for image encryption. Inf Sci 297:80–94

    Article  Google Scholar 

  21. Kanso A, Smaoui N (2009) Logistic chaotic maps for binary numbers generations. Chaos Solitons Fractals 40(5):2557–2568

    Article  Google Scholar 

  22. Martínez-González RF, Díaz Méndez JA, Palacios-Luengas L, López-Hernández J, Vázquez-Medina R (2016) A steganographic method using bernoulli’s chaotic maps. Comput Electr Eng 54:435–449

    Article  Google Scholar 

  23. Ravichandran D, Praveenkumar P, Rayappan JBB, Amirtharajan R (2016) Chaos based crossover and mutation for securing DICOM image. Comput Biol Med 72: 170–184

    Article  PubMed  Google Scholar 

  24. Rukhin A, Soto J, Nechvatal J, Smid M, Barker E et al (2010) A statistical test suite for random and pseudorandom number generators for cryptographic applications. National Institute of Standards and Testing, Washington, DC

    Google Scholar 

  25. http://www.physionet.org/cgi-bin/atm/ATM

  26. Pan J, Tompkins WJ (1985) A real-time QRS detection algorithm. IEEE Trans Biomed Eng BME 32(3):230–236

    Article  CAS  Google Scholar 

  27. Slimane ZEH, Naït-Ali A (2010) QRS complex detection using empirical mode decomposition. Digit Signal Proc 20(4):1221–1228

    Article  Google Scholar 

  28. Saini I, Singh D, Khosla A (2013) QRS detection using K-Nearest Neighbor algorithm (KNN) and evaluation on standard ECG databases. J Adv Res 4:331–344

    Article  PubMed  Google Scholar 

  29. Rodríguez R, Mexicano A, Bila J, Cervantes S, Ponce R (2015) Feature extraction of electrocardiogram signals by applying adaptive threshold and principal component analysis. J Appl Res Technol 13:261–269

    Article  Google Scholar 

  30. Carr JJ, Brown JM (2004) Introduction to biomedical equipment technology, 4th edn. Pearson Education, New Delhi

    Google Scholar 

  31. Yang H, Sun X, Sun G (2009) A high-capacity image data hiding scheme using adaptive LSB substitution. Radio Eng 18(4):509–516

    CAS  Google Scholar 

  32. Chen J, Itoh S (1998) A wavelet transform-based ECG compression method guaranteeing desired signal quality. IEEE Trans Biomed Eng 45(12):1414–1419

    Article  CAS  PubMed  Google Scholar 

  33. Al-Fahoum AS, Ishijima M (1993) Fundamentals of the decision of optimum factors in the ECG data compression. IEICE Trans Inf Syst E76-D(12):1398–1403

    Google Scholar 

  34. Al-Fahoum AS (2006) Quality assessment of ECG compression techniques using a wavelet-based diagnostic measure. IEEE Trans Inf Technol Biomed 10(1):182–191

    Article  PubMed  Google Scholar 

  35. Manikandan MS, Dandapat S (2007) Wavelet energy based diagnostic distortion measure for ECG. Biomed Signal Process Control 2(2):80–96

    Article  Google Scholar 

  36. Rajaraman V (2016) IEEE standard for floating point numbers. Resonance 21(1):11–30

    Article  Google Scholar 

  37. Pandey A, Singh B, Saini BS, Sood N (2016) A 2D electrocardiogram data compression method using a sample entropy-based complexity sorting approach. Comput Electr Eng 56:36–45

    Article  Google Scholar 

Download references

Funding

This research work does not receive any grants from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neetika Soni.

Ethics declarations

Conflict of interest

No conflict of interest.

Ethical approval

The ethical principles for medical research of World Medical Association (WMA’s) Declaration of Helsinki have been followed for data acquisition.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Performance evaluation metrics

Statistical parameters

  • PRD is the measure of acceptable fidelity and degree of distortion and it is given as [10, 37]:

    $$PRD=\sqrt {\frac{{\mathop \sum \nolimits_{{n=1}}^{N} {{\left( {{x_c}(n) - {x_s}(n)} \right)}^2}}}{{\mathop \sum \nolimits_{{n=1}}^{N} {{\left( {{x_c}(n)} \right)}^2}}}}$$

    where \({x_c}\left( n \right)\) is the nth sample of original ECG signal; \({x_s}\left( n \right)\) the nth sample of stego-ECG.

  • PRD1024 is similar to PRD, but in this base value of 1024 is removed which was added in MIT-BIH Arrhythmia database [37].

    $$PRD\,1024=\sqrt {\frac{{\mathop \sum \nolimits_{{n=1}}^{N} {{\left( {{x_c}(n) - {x_s}(n)} \right)}^2}}}{{\mathop \sum \nolimits_{{n=1}}^{N} {{\left( {{x_c}(n) - 1024} \right)}^2}}}}$$
  • The normalised PRD (PRDN) does not depend upon the mean of signal value [37].

    $$PRDN=\sqrt {\frac{{\mathop \sum \nolimits_{{n=1}}^{N} {{\left( {{x_c}(n) - {x_s}(n)} \right)}^2}}}{{\mathop \sum \nolimits_{{n=1}}^{N} {{\left( {{x_c}(n) - mean} \right)}^2}}}}$$
  • PSNR represents the measure of peak error and expressed in terms of logarithmic decibels (dB) [12]

    $$PSNR=20\,{\log _{10}}\left( {\frac{{\hbox{max} \left( {({x_c}(n)} \right)}}{{\sqrt {{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 N}}\right.\kern-0pt}\!\lower0.7ex\hbox{$N$}}\mathop \sum \nolimits_{{n=1}}^{{N}} {{\left( {{x_c}(n) - {x_s}(n)} \right)}^2}} }}} \right)$$
  • SNR is a measure of degree of noise energy introduced in decibel (dB) scale [15].

    $$SNR=10\,{\log _{10}}\left( {\frac{{\mathop \sum \nolimits_{{n=1}}^{N} {{\left( {{x_c}(n)} \right)}^2}}}{{\mathop \sum \nolimits_{{n=1}}^{N} {{\left( {{x_c}(n) - {x_s}(n)} \right)}^2}}}} \right)$$
  • MSE measures the difference between the original and stego-ECG signal as [35]

    $$MSE=\frac{1}{N}\mathop \sum \limits_{{n=1}}^{{N}} {\left( {{x_c}(n) - {x_s}(n)} \right)^2}$$
  • MAE is defined as [15]

    $$MAE=\frac{1}{N}\mathop \sum \limits_{{n=1}}^{N} \left| {{x_c}(n) - {x_s}(n)} \right|$$
  • KL-Divergence measures the distance between the histograms of the cover and stego signals. It can be expressed as [13]

    $$~D\left( {{p_c},{p_s}} \right)=\int {{p_c}(x)~\log \frac{{{p_s}(x)}}{{{p_c}(x)}}dx}$$

    where D is the KL-Divergence, \({p_c}\) is the probability of the cover signal and \({p_s}\) is the probability of the stego-ECG signal.

Clinical measures

  • WWPRD is method of finding error based on the weighting criteria where the subbands of the transformed ECG signal are multiplied with the computed weights [10, 35]. It is given as

    $$WWPRD=~\mathop \sum \limits_{{j=0}}^{{j=L}} {w_j}PR{D_j}$$
    $${\text{where}}\;{w_j}=\frac{{\mathop \sum \nolimits_{{i=1}}^{{{n_j}}} \left| {{a_j}(i)} \right|}}{{\mathop \sum \nolimits_{{j=1}}^{{L+1}} \mathop \sum \nolimits_{{i=1}}^{{{n_j}}} \left| {{a_j}(i)} \right|}};\quad j=1,{\text{ }}2, \ldots ..L+1$$

    \({w_j}\) are the weights computed from ECG signal, j = 0 represents the approximate subband, j = 1 to L represents the detail subband, \({n_j}\) is the number of wavelet coefficient in the jth subband, \({a_j}~\) is an original coefficient within jth subband.

  • WEDD [35, 37] calculates the energy of the wavelet coefficients is utilized to compute the dynamic weight of each subband. It is given as

    $$WEDD=~\mathop \sum \limits_{{j=0}}^{{j=L}} w_{j}^{*}PR{D_j}$$
    $$w_{j}^{*}=\frac{{\mathop \sum \nolimits_{{i=1}}^{{{n_j}}} a_{{j~}}^{2}(i)}}{{\mathop \sum \nolimits_{{j=1}}^{{L+1}} \mathop \sum \nolimits_{{i=1}}^{{{n_j}}} a_{{j~}}^{2}(i)}}\quad {\text{where}}\;j=1,{\text{ }}2, \ldots ..L+1$$
    $$w_{j}^{*} \;{\text{is the weight computed from jth subband}}.$$
  • EC is defined as the hiding capacity of the signal and expressed as the ratio between the total number of hidden secret bits and the total number of samples in the ECG signal.

  • BER gives the measure of percentage of data loss [12] and can be written as.

    $${\text{BER}}=\frac{{{\text{Bits retrieved correctly}}}}{{{\text{Total bits embedded}}}} \times {\text{100}}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, N., Saini, I. & Singh, B. A morphologically robust chaotic map based approach to embed patient’s confidential data securely in non-QRS regions of ECG signal. Australas Phys Eng Sci Med 42, 111–135 (2019). https://doi.org/10.1007/s13246-018-00718-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-018-00718-1

Keywords

Navigation