Skip to main content
Log in

Effects of sprouted and fermented quinoa (Chenopodium quinoa) on glycemic index of diet and biochemical parameters of blood of Wistar rats fed high carbohydrate diet

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Sprouted and fermented foods have shown hypoglycemic effects on humans and animals, by reducing concentrations of soluble carbohydrates, and increasing dietary fiber and resistant starch content. In this study, diets with high levels of simple carbohydrates supplemented with toasted quinoa flour, sprouted and toasted quinoa flour, fermented and toasted quinoa flour or sprouted/fermented and toasted quinoa flour were given to Wistar rats. During the experiment, the glycemic index (GI) of the diets were measure and, at the end of 47 days of feeding, the effects of the diets on physical and biochemical parameters of the animals were evaluated. Results indicated that the processes of sprouting and/or fermentation potentiate the ability of quinoa to reduce GI of diets with high levels of simple carbohydrates. Moreover, food intake, blood glucose and lipid levels, and accumulation of epididymal adipose tissue were reduced in rats fed diets supplemented with quinoa. These effects may be due to the nutritional composition of the supplemented diets, besides the chemical changes promoted by processing quinoa. These results are particularly relevant once sprouted and fermented quinoa could be an alimentary source of interest, especially for disease risk prevention such as diabetes, obesity and dyslipidemias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdel-Aal ESM, Rabalski I (2008) Effect of baking on nutritional properties of starch in organic spelt whole grain products. Food Chem 111(4):150–156

    Article  CAS  Google Scholar 

  • Abellán Ruiz MS, Barnuevo Espinosa MD, García Santamaría C, Contreras Fernández CJ, Aldeguer García M, Soto Méndez F, Guillén Guillén I, Luque Rubia AJ, Quinde Ràzuri FJ, Martínez Garrido A, López Román FJ (2017) Effect of quinua (Chenopodium quinoa) consumption as a coadjuvant in nutritional intervention in prediabetic subjects. Nutr Hosp 34(5):1163–1169

    PubMed  Google Scholar 

  • AOAC International (2007) Official methods of analysis, 18th edn. AOAC International, Gaithersburg

    Google Scholar 

  • Augustin LS, Kendall CW, Jenkins DJ, Willett WC, Astrup A, Barclay AW et al (2015) Glycemic index, glycemic load and glycemic response: an International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr Metab Cardiovasc Dis 25(9):795–815

    Article  CAS  PubMed  Google Scholar 

  • Avancini SRP (2007) Caracterização química, microbiológica e toxicológica da água da fermentação do amido de mandioca. Universidade Federal de Santa Catarina, Florianópolis, p 104

    Google Scholar 

  • Bem AF, Kunde JA (2006) Importância da hemoglobina glicada no monitoramento das complicações crônicas do diabetes mellitus. J Bras Patol Med Lab 42(3):185–191

    Article  Google Scholar 

  • Berti C, Riso P, Monti LD, Porrini M (2004) In vitro starch digestibility and in vivo glucose response of gluten-free foods and their gluten counterparts. Eur J Nutr 43(4):198–204

    Article  CAS  PubMed  Google Scholar 

  • Berti C, Riso P, Brusamolino A, Porrini M (2005) Effect on appetite control of minor cereal and pseudocereal products. Br J Nutr 94(5):850–858

    Article  CAS  PubMed  Google Scholar 

  • Brighenti F, Benini L, Del Rio D, Casiraghi C, Pellegrini N, Scazzina F, Jenkins DJ, Vantini I (2006) Colonic fermentation of indigestible carbohydrates contributes to the second-meal effect. Am J Clin Nutr 83(4):817–822

    Article  CAS  PubMed  Google Scholar 

  • Cereda MP (1983) Padronização para ensaios de qualidade de fécula fermentada de mandioca (polvilho azedo): I. Formulação e preparo de biscoitos. B Soc Bras Ciênc Tecnol Alimen 17(3):287–295

    Google Scholar 

  • Dashty M (2013) A quick look at biochemistry: carbohydrate metabolism. Clin Biochem 46(15):1339–1352

    Article  CAS  PubMed  Google Scholar 

  • De Angelis-Pereira MC, Barcelos MFP, Pereira JAR, Pereira RC, de Sousa RV (2016) Chemical composition of unripe banana peels and pulps flours and its effects on blood glucose of rats. Nutr Food Sci 46(4):504–516

    Article  Google Scholar 

  • Diowksz A, Kordialik-Bogacka E, Ambroziak W (2014) Se-enriched sprouted seeds as functional additives in sourdough fermentation. LWT Food Sci Technol 56:524–528

    Article  CAS  Google Scholar 

  • Ferreira DF (2008) Sisvar: um programa para análise e ensino de estatística. Rev Symp 6(4):36–41

    Google Scholar 

  • Hsu TF, Kise M, Wang MF, Ito Y, Yang MD, Aoto H, Yoshihara R, Yokoyama J, Kunii D, Yamamoto S (2008) Effects of pre-sprouted brown rice on blood glucose and lipid levels in free-living patients with impaired fasting glucose or type 2 diabetes. J Nutr Sci Vitaminol 54(2):163–168

    Article  CAS  PubMed  Google Scholar 

  • Kabir M, Guerre-Millo M, Laromiguiere M, Slama G, Rizkalla SW (2000) Negative regulation of leptin by chronic high-glycemic index starch diet. Metabolism 49(6):764–769

    Article  CAS  PubMed  Google Scholar 

  • Lattimer JM, Haub MD (2010) Effects of dietary fiber and its components on metabolic health. Nutrients 2(12):1266–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerer-Metzger M, Rizkalla SW, Luo J, Champ M, Kabir M, Bruzzo F, Bornet F, Slama G (1996) Effects of long-term low-glycaemic index starchy food on plasma glucose and lipid concentrations and adipose tissue cellularity in normal and diabetic rats. Br J Nutr 75(5):723–732

    Article  CAS  PubMed  Google Scholar 

  • Ludwig DS (2002) The glycemic index physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 287(18):2414–2423

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Perez D, Radcliffe J, Tierney A, Jois M (2017) Quinoa seed lowers serum triglycerides in overweight and obese subjects: a dose–response randomized controlled clinical trial. Curr Dev Nutr 1(9):e001321

    Article  PubMed  PubMed Central  Google Scholar 

  • Onwulata C, Thomas-Gahring A, Cooke P, Phillips J, Carvalho CW, Ascheri JL, Tomasula P (2008) Production of extruded barley, cassava, corn and quinoa enriched with whey proteins and cashew pulp. Int J Food Prop 37(8):362–371

    Google Scholar 

  • Östaman EM, Nilsso M, Liljeberg Elmstahl HGM, Molin G, Bjorck IME (2002) On the effect of lactic acid on blood glucose and insulin responses to cereal products: mechanistic studies in healthy subjects and in vitro. J Cereal Sci 36(2):339–346

    Article  CAS  Google Scholar 

  • Östman EM, Liljeberg Elmståhl HG, Björck IM (2001) Inconsistency between glycemic and insulinemic responses to regular and fermented milk products. Am J Clin Nutr 74(1):96–100

    Article  PubMed  Google Scholar 

  • Östman EM, Granfeldt Y, Persson L, Björck IM (2005) Vinegar supplementation lowers glucose and insulin responses and increases satiety after a bread meal in healthy subjects. Eur J Clin Nutr 59(9):983–988

    Article  CAS  PubMed  Google Scholar 

  • Paśko P, Zagrodzki P, Bartoń H, Chłopicka J, Gorinstein S (2010) Effect of quinoa seeds (Chenopodium quinoa) in diet on some biochemical parameters and essential elements in blood of high fructose-fed rats. Plant Foods Hum Nutr 65(4):333–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellet PL, Young VR (1980) Evaluation of protein quality in experimental animals. In: Nutritional evaluation of protein foods. The United Nations University, Tokyo

    Google Scholar 

  • Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123(11):1939–1951

    Article  CAS  Google Scholar 

  • Sacks FM, Carey VJ, Anderson CA, Miller ER, Copeland T, Charleston J, Harshfield BJ, Laranjo N, McCarron P, Swain J, White K, Yee K, Appel LJ (2014) Effects of high vs low glycemic index of dietary carbohydrate on cardiovascular disease risk factors and insulin sensitivity: the OmniCarb randomized clinical trial. JAMA 312(23):2531–2541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scazzina F, Del Rio D, Pellegrini N, Brighenti F (2009) Sourdough bread: starch digestibility and postprandial glycemic response. J Cereal Sci 49(11):419–421

    Article  CAS  Google Scholar 

  • Schabes FI, Sigstad EE (2004) Calorimetric studies of quinoa (Chenopodium quinoa Willd.) seed germination under saline stress conditions. Thermochim Acta 428(8):71–75

    Google Scholar 

  • Seki T, Nagase R, Torimitsu M, Yanagi M, Ito Y, Kise M, Mizukuchi A, Fujimura N, Hayamizu K, Ariga T (2005) Insoluble fiber is a major constituent responsible for lowering the post-prandial blood glucose concentration in pre-sprouted brown rice. Biol Pharm Bull 28(8):1539–1541

    Article  CAS  PubMed  Google Scholar 

  • Silva RN, Duarte GL, Lopes NF, de Moraes DM, Pereira AAA (2008) Composição química de sementes de trigo (Triticum aestivum L.) submetidas a estresse salino na germinação. Rev Bras Sementes 30(1):148–155

    Google Scholar 

  • Singh AK, Rehal J, Kaur A, Jyot G (2015) Enhancement of attributes of cereals by germination and fermentation: a review. Crit Rev Food Sci Nutr 55:1575–1589

    Article  CAS  PubMed  Google Scholar 

  • Stamataki NS, Yanni AE, Karathanos VT (2017) Bread making technology influences postprandial glucose response: a review of the clinical evidence. Br J Nutr 117(7):1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Takao T, Watanabe N, Yuhara K, Konishi Y (2005) Hypocholesterolemic efect of protein isolated from quinoa (Chenopodium quinoa Willd.) seeds. Food Sci Technol Res 11(2):161–167

    Article  CAS  Google Scholar 

  • Yamakawa T, Sakamoto R, Takahashi K, Suzuki J, Matuura-Shinoda M, Takahashi M, Shigematsu E, Tanaka S, Kaneshiro M, Asakura T, Kawata T, Yamada Y, Osada UN, Isozaki T, Takahashi A, Kadonosono K, Terauchi Y (2018) Dietary survey in Japanese patients with type 2 diabetes and influence of dietary carbohydrate on hemoglobin A1c: the Soreka study. J Diabetes Investig. https://doi.org/10.1111/jdi.12903

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Federal University of Lavras (Universidade Federal de Lavras, UFLA), Lavras/Minas Gerais (MG) and the Minas Gerais Research Foundation (Fundação de Amparo a Pesquisa de Minas Gerais, FAPEMIG) for the support for the development of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Cardoso de Angelis-Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, C.O., Barcelos, M.F.P., Vieira, C.N.G. et al. Effects of sprouted and fermented quinoa (Chenopodium quinoa) on glycemic index of diet and biochemical parameters of blood of Wistar rats fed high carbohydrate diet. J Food Sci Technol 56, 40–48 (2019). https://doi.org/10.1007/s13197-018-3436-z

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-018-3436-z

Keywords

Navigation