Skip to main content
Log in

Evaluation of some in vitro probiotic properties of Lactobacillus fermentum Strains

  • Short Communication
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

This study aimed to check the in vitro probiotic properties of eleven Lactobacillus fermentum strains previously isolated from fermented dairy products and infant faeces. These cultures were tested for their tolerance to different pH such as 2.0, 2.5, 3.0, 3.5 and 6.5, bile salt hydrolysis and cell surface hydrophobicity. All the strains were persistent at pH 3.5 for 3 h whereas only faecal origin isolates such as L. fermentum BIF-19, BIF-20, BIF-18 and MTCC 8711 had shown considerable growth at pH 2.5. The strains NCDC-400, MTCC 8711, BIF-18, BIF-19 and BIF-20 showed slight to intense precipitation zone of bile salt hydrolase activity by agar plate assay. The strain L. fermentum BIF-19 exhibited best preliminary probiotic properties was selected for the adhesion to Caco-2 cell lines, which shows similar adhesion to that observed for standard probiotic Lactobacillus rhamnosus GG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bao Y, Zhang Y, Zhang Y et al (2010) Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control 21:695–701

    Article  CAS  Google Scholar 

  • Begley M, Hill C, Gahan CG (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72:1729–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchez-Naitali M, Blanchet D et al (2001) Evidence for interfacial uptake in hexadecane degradation by Rhodococcus equi: the importance of cell flocculation. Microbiology 147:2537–2543

    Article  CAS  PubMed  Google Scholar 

  • Cerbo AD, Palmieri B, Aponte M, Morales-Medina JC, Iannitti T (2016) Mechanisms and therapeutic effectiveness of lactobacilli. J Clin Pathol 69:187–203

    Article  PubMed  Google Scholar 

  • Clark RB (1997) Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant Soil 192:15–22

    Article  CAS  Google Scholar 

  • Daliria EB, Lee BH (2015) New perspectives on probiotics in health and disease. Food Sci Hum Wellness 4:56–65

    Article  Google Scholar 

  • De Angelis M, Gobbetti M (2004) Environmental stress responses in Lactobacillus: a review. Proteomics 4:106–122

    Article  CAS  PubMed  Google Scholar 

  • Dimitrov Z, Gotova I, Chorbadjiysk E (2014) In vitro characterization of the adhesive factors of selected probiotics to Caco-2 epithelium cell line. Biotechnol Biotechnol Equip 28:1079–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geertsema-Doornbusch GI, Van der Mei HC, Busscher HJ (1993) Microbial cell surface hydrophobicity the involvement of electrostatic interactions in microbial adhesion to hydrocarbons (MATH). J Microbiol Methods 18:61–68

    Article  Google Scholar 

  • Giard JC, Laplace JM, Rince A, Pichereau V, Benachour A, Leboeuf C, Flahaut S, Auffray Y, Hartke A (2001) The stress proteome of Enterococcus faecalis. Electrophoresis 22:2947–2954

    Article  CAS  PubMed  Google Scholar 

  • Greene JD, Klaenhammer TR (1994) Factors involved in adherence of lactobacilli to human Caco-2 cells. Appl Environ Microbiol 60:4487–4494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grill JP, Cayuela C et al (2000) Isolation and characterization of a Lactobacillus amylovorus mutant depleted in conjugated bile salt hydrolase activity: relation between activity and bile salt resistance. J Appl Microbiol 89:553–563

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen CN, Nielsen VR et al (1999) Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol 65:4949–4956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaewnopparat S, Dangmanee N et al (2013) In vitro probiotic properties of Lactobacillus fermentum SK5 isolated from vagina of a healthy woman. Anaerobe 22:6–13

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Ali SA, Kumar S, Mohanty AK, Behare PV (2017) Label-free quantitative proteomic analysis of Lactobacillus fermentum NCDC 400 during bile salt exposure. J Proteom 7:36–45

    Article  CAS  Google Scholar 

  • Kullisaar T, Zilmer K, Salum T, Rehema A, Zilmer M (2016) The use of probiotic L. fermentum ME-3 containing Reg’Activ Cholesterol supplement for 4 weeks has a positive influence on blood lipoprotein profiles and inflammatory cytokines: an open-label preliminary study. Nutr J 15:93. https://doi.org/10.1186/s12937-016-0213-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panicker AS, Behare PV (2014) Evaluation of bile tolerance in dairy and human origin Lactobacillus fermentum strains. Ind J Dairy Sci 67:421–425

    Google Scholar 

  • Parijat P, Lule V, Munjal K, Ali SA, Rawat P, Kumar S, Behare PV, Mohanty AK (2016) Evaluation of stationary phase and bile stress related protein spots in Lactobacillus fermentum NCDC 400 by 2-DE method. Ind J Dairy Sci 69:455–459

    Google Scholar 

  • Parijat P, Kaur G, Ali SA, Bhatla S, Rawat P, Lule V, Kumar S, Mohanty AK, Behare PV (2017) High-resolution mass spectrometry-based global proteomic analysis of probiotic strains Lactobacillus fermentum NCDC 400 and RS2. J Proteom 152:121–130

    Article  CAS  Google Scholar 

  • Pfeiler EA, Azcarate-Peril MA, Klaenhammer TR (2007) Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. J Bacteriol 189:4624–4634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos CL, Thorsen L et al (2013) Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products. Food Microbiol 36:22–29

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    Article  CAS  Google Scholar 

  • Singh TP, Kaur G, Kapila S, Malik RK (2017) Antagonistic activity of Lactobacillus reuteri strains on the adhesion characteristics of selected pathogens. Front Microbiol 8:486. https://doi.org/10.3389/fmicb.2017.00486

    Article  PubMed  PubMed Central  Google Scholar 

  • Sriphannam W, Lumyong S, Niumsap P, Ashida H, Yamamoto K, Khanongnuch C (2012) A selected probiotic strain of Lactobacillus fermentum CM33 isolated from breast-fed infants as a potential source of β-galactosidase for prebiotic oligosaccharide synthesis. J Microbiol 50:119–126

    Article  CAS  PubMed  Google Scholar 

  • Strevett KA, Chen G (2003) Microbial surface thermodynamics and applications. Res Microbiol 154:329–335

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Doesburg K et al (1999) Screening of lactic acid bacteria for bile salt hydrolase activity. J Dairy Sci 82:2530–2535

    Article  CAS  PubMed  Google Scholar 

  • Taranto MP, Sesma F, Valdez FG (1999) Localization and primary characterization of bile salt hydrolase from Lactobacillus reuteri. Biotechnol Lett 21:935–938

    Article  CAS  Google Scholar 

  • Veiga P, Pons N, Agrawal A et al (2014) Changes of the human gut microbiome induced by a fermented milk product. Sci Rep 4:6328. https://doi.org/10.1038/srep06328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West NP, Pyne DB et al (2011) Lactobacillus fermentum (PCC®) supplementation and gastrointestinal and respiratory-tract illness symptoms: a randomised control trial in athletes. Nutr J 10:30. https://doi.org/10.1186/1475-2891-10-30

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li S, Gan R, Zhou T, Xu D, Li H (2015) Impacts of gut bacteria on human health and diseases. Int J Mol Sci 16:7493–7519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoumpopoulou G, Foligne B et al (2008) Lactobacillus fermentum ACA-DC179 displays probiotic potential in vitro and protects against trinitrobenzene sulfonic acid (TNBS)-induced colitis and Salmonella infection in murine models. Int J Food Microbiol 121:18–26

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contribution of Director, ICAR-NDRI, Karnal, for the financial support and providing a necessary facility for carrying out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradip V. Behare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panicker, A.S., Ali, S.A., Anand, S. et al. Evaluation of some in vitro probiotic properties of Lactobacillus fermentum Strains. J Food Sci Technol 55, 2801–2807 (2018). https://doi.org/10.1007/s13197-018-3197-8

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-018-3197-8

Keywords

Navigation