Advertisement

Journal of Food Science and Technology

, Volume 55, Issue 5, pp 1942–1947 | Cite as

Use of urea-polyacrylamide electrophoresis for discrimination of A1 and A2 beta casein variants in raw cow’s milk

  • Miguel Angel Duarte-Vázquez
  • Carlos Raúl García-Ugalde
  • Blanca Erika Álvarez
  • Laura Mariana Villegas
  • Blanca Estela García-Almendárez
  • Jorge Luis Rosado
  • Carlos Regalado
Short Communication

Abstract

Beta-casein (BC) in cow’s milk occurs in several genetic variants, where BC A1 (BCA1) and BC A2 (BCA2) are the most frequent. This work deals with a method based on modified polyacrylamide gel electrophoresis using urea PAGE to discriminate BCA1 and BCA2 variants from Holstein Friesian (HF) and genetically selected Jersey A2/A2 (JA2) cow’s milk. Two well defined bands were obtained from BC fraction of HF milk, while that of JA2 showed a single band. Proteins from these bands were sequenced by HPLC-quadrupole linear ion trap/mass spectrometry, resulting in BCA1 and BCA2 separation from the BC fraction of HF milk, whereas BCA2 was the only constituent of JA2 fraction. This method represents a feasible and useful tool to on site phenotyping of BC fraction of cow’s milk for pharmaceutical and food industries applications.

Keywords

Cow’s milk Beta casein A1 Beta casein A2 Polyacrylamide gel Mass spectrometry 

Notes

Acknowledgements

Tanks are given to CONACyT-PEI, for Grant No. C003V-2013-01-199586. Authors acknowledge Ecológico Tierra Viva breeders for genotyping control data and provision of milk samples. Authors thank Dr. C. Ferreira-Batista and E. Meneses-Romero from IBT, UNAM, México for technical support in BC sequencing.

References

  1. Andrews AT (1983) Proteinases in normal bovine milk and their action on caseins. J Dairy Res 50:45–55CrossRefGoogle Scholar
  2. Aschaffenburg R, Thymann M (1965) Simultaneous phenotyping procedure for the principal proteins of cow’s milk. J Dairy Sci 48:1524–1526CrossRefGoogle Scholar
  3. Atamer Z, Post AE, Schubert T, Holder A, Boom RM, Hinrichs J (2017) Bovine β-casein: isolation, properties and functionality. A review. Int Dairy J 66:115–125CrossRefGoogle Scholar
  4. Bonizzi I, Buffoni JN, Feligini M (2009) Quantification of bovine casein fractions by direct chromatographic analysis of milk. Approaching the application to a real production context. J Chromatogr A 1216:165–168CrossRefGoogle Scholar
  5. Bulgari O, Raineri M, Gigliotti C, Caroli AM (2013) Metodo per la quantificazione delle varianti genetiche di β-caseina bovina. Scienza Tecnica Lattiero-Casearia 64:101–107Google Scholar
  6. Caroli AM, Chessa S, Erhardt GJ (2009) Milk protein polymorphisms in cattle: effect on animal breeding and human nutrition. J Dairy Sci 92:5335–5352CrossRefGoogle Scholar
  7. Caroli AM, Savino S, Bulgari O, Monti E (2016) Detecting β-casein variation in bovine milk. Molecules 21:141–147CrossRefGoogle Scholar
  8. Cieslinska A, Kostyra EB, Kostyra H, Olenski K, Fiedorowicz E, Kaminski SA (2012) Milk from cows of different β-casein genotypes as a source of β-casomorphin-7. Int J Food Sci Nutr 63:426–430CrossRefGoogle Scholar
  9. De Noni I (2008) Release of β-casomorphins 5 and 7 during simulated gastrointestinal digestion of bovine β-casein variants and milk-based infant formulas. Food Chem 110:897–903CrossRefGoogle Scholar
  10. Eigel WN, Butler JE, Emstrom EA, Farrell KM, Harwalkar VR, Jenness R, Whitney RML (1984) Nomenclature of proteins of cow’s milk: fifth revision. J Dairy Sci 67:1599–1631CrossRefGoogle Scholar
  11. Gallinat JL, Qanbari S, Drogemuller C, Pimentel ECG, Thaller G, Tetens J (2013) DNA-based identification of novel bovine casein gene variants. J Dairy Sci 96:699–709CrossRefGoogle Scholar
  12. Givens I, Aikman P, Gibson T, Brown R (2013) Proportions of A1, A2, B and C β-casein protein variants in retail milk in the UK. Food Chem 139:549–552CrossRefGoogle Scholar
  13. Grosclaude F, Mahe MF, Mercier JC, Ribadeau-Dumas B (1972) Caracterisation des variants genetiques des caseine αs1 et β bovines. Eur J Biochem 26:328–337CrossRefGoogle Scholar
  14. Hollar CM, Law AJ, Dalgleish DG, Medrano JF, Brown RJ (1991) Separation of beta-casein A1, A2, and B using cation-exchange fast protein liquid chromatography. J Dairy Sci 74:3308–3313CrossRefGoogle Scholar
  15. Huppertz T (2013) Chemistry of the caseins. In: Fox PF (ed) Advanced dairy chemistry. Springer, New York, pp 135–160CrossRefGoogle Scholar
  16. Jinsmaa Y, Yoshikawa M (1999) Enzymatic release of neocasomorphin and beta-casomorphin from bovine beta-casein. Peptides 20:957–962CrossRefGoogle Scholar
  17. Kaminski S, Cieslinska A, Kostyra E (2007) Polymorphism of bovine beta-casein and its potential effect on human health. J Appl Genet 48:189–198CrossRefGoogle Scholar
  18. Kiddy CA (1975) Gel electrophoresis in vertical polyacrylamide beds. Procedure II. In: Swaisgood HE (ed) Methods of gel electrophoresis of milk proteins. Illinois, American Dairy Science Association, pp 16–17Google Scholar
  19. Martin P, Bianchi L, Cebo C, Miranda G (2013) Genetic polymorphism of milk proteins. In: Fox PF (ed) Advanced dairy chemistry. Springer, New York, pp 463–514CrossRefGoogle Scholar
  20. Nguyen DD, Busetti F, Johnson SK, Solah VA (2015) Identification and quantification of native beta-casomorphins in Australian milk by LC-MS/MS and LC-HRMS. J Food Compos Anal 44:102–110CrossRefGoogle Scholar
  21. Nilsen H, Olsen HG, Hayes B, Sehested E, Svendsen M, Nome T, Meuwissen T, Lien S (2009) Casein haplotypes and their association with milk production traits in Norwegian Red cattle. Genet Sel Evol 41:1–12CrossRefGoogle Scholar
  22. Peterson RF, Kopfler FC (1966) Detection of new types of b-casein by polyacrylamide gel electrophoresis at acid pH: a proposed nomenclature. Biochem Biophys Res Commun 22:388–392CrossRefGoogle Scholar
  23. Raies MH, Kapila R, Shandilya UK, Dang AK, Kapila S (2012) Detection of A1 and A2 genetic variants of β-casein in Indian crossbred cattle by PCR-ACRS. Milchwissenschaft 67:396–398Google Scholar
  24. Raies MH, Kapila R, Kapila S (2015) Release of β-casomorphin-7/5 during simulated gastrointestinal digestion of milk β-casein variants from Indian crossbred cattle (Karan Fries). Food Chem 168:70–79CrossRefGoogle Scholar
  25. Sadler MJ, Smith N (2013) Beta-casein proteins and infant growth and development. Infant J 9:173–176Google Scholar
  26. Swaisgood HE (1992) Chemistry of the caseins. In: Fox PC (ed) Advanced dairy chemistry. Elsevier Applied Science, London, pp 63–110Google Scholar
  27. Thompson MP, Gordon WG, Boswell RT, Farrell HM (1969) Solubility, solvation and stabilization of αs1- and β-caseins. J Dairy Sci 52:1166–1173CrossRefGoogle Scholar
  28. Veloso ACA, Teixeira N, Peres AM, Mendonça A, Ferreira IMPLVO (2004) Evaluation of cheese authenticity and proteolysis by HPLC and urea-polyacrylamide gel electrophoresis. Food Chem 87:289–295CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2018

Authors and Affiliations

  • Miguel Angel Duarte-Vázquez
    • 1
  • Carlos Raúl García-Ugalde
    • 1
  • Blanca Erika Álvarez
    • 2
  • Laura Mariana Villegas
    • 1
  • Blanca Estela García-Almendárez
    • 2
  • Jorge Luis Rosado
    • 3
  • Carlos Regalado
    • 2
  1. 1.Centro de Investigación y Desarrollo Tecnológico en Enfermedades Crónicas A.C.QuerétaroMexico
  2. 2.DIPA, Facultad de QuímicaUniversidad Autónoma de Querétaro. C.U.QuerétaroMexico
  3. 3.Facultad de Ciencias NaturalesUniversidad Autónoma de Querétaro Campus JuriquillaSanta Rosa JáureguiMexico

Personalised recommendations