Skip to main content
Log in

‘Physics is a kind of metaphysics’: Émile Meyerson and Einstein’s late rationalistic realism

  • Paper in History and Philosophy of Science
  • Published:
European Journal for Philosophy of Science Aims and scope Submit manuscript

Abstract

Gerald Holton has famously described Einstein’s career as a philosophical “pilgrimage”. Starting on “the historic ground” of Machian positivism and phenomenalism, following the completion of general relativity in late 1915, Einstein’s philosophy endured (a) a speculative turn: physical theorizing appears as ultimately a “pure mathematical construction” guided by faith in the simplicity of nature and (b) a realistic turn: science is “nothing more than a refinement ”of the everyday belief in the existence of mind-independent physical reality. Nevertheless, Einstein’s mathematical constructivism that supports his unified field theory program appears to be, at first sight, hardly compatible with the common sense realism with which he countered quantum theory. Thus, literature on Einstein’s philosophy of science has often struggled in finding the thread between ostensibly conflicting philosophical pronouncements. This paper supports the claim that Einstein’s dialog with Émile Meyerson from the mid 1920s till the early 1930s might be a neglected source to solve this riddle. According to Einstein, Meyerson shared (a) his belief in the independent existence of an external world and (b) his conviction that the latter can be grasped only by speculative means. Einstein could present his search for a unified field theory as a metaphysical-realistic program opposed to the positivistic-operationalist spirit of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In a letter to the mathematician Eduard Study, commenting on the latter’s booklet Die realistische Weltansicht und die Lehre von Raume (Study 1914), Einstein wrote this often-quoted remark: “‘The physical world is real’; [. . .] The above statement appears to me, however, to be, in itself, meaningless, as if one said: ‘The physical world is cock-adoodle-doo’ [. . .] I concede that the natural sciences concern the ‘real,’ but I am still not a realist” (Einstein to Study, Sep. 25, 1918; CPAE, Vol. 8, Doc. 624). The following year, Einstein defined Study’s realism as a “nebulous point of view” (Einstein to Vaihinger, May 3, 1919; CPAE, Vol. 8, Doc. 33). Toward the end of his life, Einstein chose the Kantian formula that the real is nicht gegeben, sondern aufgegben (Einstein1949, 680), to emphasize that the question the physics construction corresponds to the world as it ‘really is’ is empty. Fine (1986, 87ff.) has famously labeled Einstein’s attitude ‘entheorizing realism’. Einstein seems to deny the possibility of a theory-free standpoint from which what is real can be judged. Electrons are what a physical theory says they are, and our only warrant for knowing that they exist is the success of that theory.

  2. In Einstein’s view, science assumes that electrons, electromagnetic fields, etc., exist in the same way as a table or a tree, independently of whether or not we observe them. This is what Einstein meant when he famously asked Abraham Pais whether he “really believed that the moon exists only if I look at it” (Pais 1982, 5). The same example was used by Einstein in Einstein (1953). It is one of the “macroscopic incompleteness arguments” that Einstein put forward against quantum mechanics, starting from the chemically unstable pile of gunpowder that he had introduced in a letter to Erwin Schrödinger in 1935 (Einstein to Schrödinger, Aug. 8, 1935; ESBW, Doc. 215). Fine (1986, 109ff.) has labeled this form of realism ‘motivational realism’. Even if, say, electrons are ultimately theoretical constructs, we prefer theories that claim that electrons exist out there even if we do not look at them just like macroscopic objects. This is the only assumption that makes sense of scientific inquiry even if it cannot be proved.

  3. Einstein to Paul Hertz, Aug. 22, 1915; CPAE, Vol. 8, Doc. 111.

  4. In 1912, while starting to work on a new theory of gravitation, Einstein wrote to Sommerfeld that he had “gained enormous respect for mathematics, whose more subtle parts” he was used to consider “as pure luxury” (Einstein to Sommerfeld, Oct. 29, 1912; CPAE, Vol. 5, Doc. 421). However, in 1917, he complained with Felix Klein that “the value of formal points of view” is “overrate[ed]”. “These may be valuable when an already found truth needs to be formulated in a final form, but they fail almost always as heuristic aid” (Einstein to Klein, Dec. 5, 17; CPAE, Vol. 8, Doc. 408). Similarly in 1918, Einstein reacted indignantly to Besso’s suggestion that general relativity owed its formulation to speculation rather than experience: “I believe that this development teaches [. . .] the opposite, namely that for a theory to deserve trust, it has to be built on generalizable facts”. “A truly useful and deep theory,” Einstein concluded, “has never been found in a purely speculative fashion” (Einstein to Besso, Aug. 28, 1918; CPAE, Vol. 8, Doc. 607; cf. also Einstein to Besso, Sep. 8, 1918; CPAE, Vol. 8, Doc. 612. Relativity theory, Einstein insisted, “was absolutely not the result of mathematical speculations, as many thinks” (Einstein 1920, 245[p. 1]).

  5. van Dongen (2010) explicitly emphasized the interplay of both rationalism and realism, which lurks in Einstein’s unified field theory-project. To a large extent, this paper provides a historical-philosophical counterpart of van Dongen’s book by focusing on Einstein’s dialog with the philosophical community rather than on his scientific work.

  6. A counterexample might be the work of Elie Zahar (1980, 1987) who, however, seems to be concerned with Meyerson’s philosophy itself rather with the Meyerson–Einstein relationship (Zahar 1989, sec. 1.3). An account of the latter is given in Balibar (2010), which rightly emphasizes that the dialog was hampered by reciprocal misunderstandings. However, in my view, Balibar does not consider all textual evidence, thus underestimating the importance of Meyerson’s philosophy (or at least Einstein’s simplified and distorted version of it) to understand Einstein’s philosophical views in the 1925–1933 period.

  7. Still useful expositions of Meyerson’s thought appeared already during his life (Brunschvicg 1926; de la Harpe 1925; Høffding 1925; Koyré 1931; Lichtenstein 1928). Meyerson’s disciple, André Metz, wrote the first monograph on Meyerson (Metz 1927), followed by Stumper (1929), Abbagnano (1929), Boas (1930), Sée (1932). Possibly because of Gaston Bachelard’s (1934) influential critique of Meyerson’s chosisme, the interest for Meyerson’s work started to decline after his death in 1933. Renewed interest emerged in the 1960s (Marcucci 1962; Mourélos 1962; LaLumia 1966; Manzoni 1971). The more recent and authoritative overall exposition of Meyerson’s philosophy is Fruteau de Laclos (2009). For a recent biography of Meyerson, see Bensaude-Vincent and Telkes-Klein (2016). The monographic number of the journal Corpus dedicated to Meyerson (Bensaude-Vincent 2010) entails some excellent contributions. For Meyerson’s interpretation of relativity theory, see Hentschel (1990), sec. 4.11.2; Ryckman (2005), ch. 9; Ben Menahem (2010). For recent literature on Meyerson in English, cf. Mills (2014, 2015). In the following, I shall draw freely from this literature.

  8. Meyerson’s historical approach to the philosophy of science is probably the most actual aspect of his philosophical heritage. It is possible to speak of a ‘Meyerson Circle’ (Howard 2011) that comprises historians/philosophers of science like Alexandre Koyré (1961) and Héléne Metzger (1929, cf. Chimisso and Freudenthal 2003; Chimisso 2016, ch. 5). Kuhn (1962) famously mentions Meyerson, Koyré, and Metzger as major influences on his work.

  9. Meyerson dedicated to this issue some paragraphs of De l’explication dans les sciences (Meyerson 1921). Meyerson was aware that the connection of space and time in a four-dimensional mathematical structure was not in itself a novelty of Einstein’s theory. He refers to “the more than a century-old statement of Lagrange” (Meyerson 1921, 2:376; tr. 1991, 538) that mechanics can be regarded as a geometry of four dimensions (Lagrange 1797, 223). According to Meyerson, this reflects a tendency of scientific thought to spatialize time and eliminate the flow of time (Meyerson 1921, 2:376; tr. 1991, 538). Nevertheless, special relativity cannot be considered the coronation of this process “as is seen by Einstein’s fundamental argument, which points out that ”one cannot telegraph into the past”” (Meyerson 1921, 2:377; tr. 1991, 538). Cf. next footnote.

  10. The phrase “[u]sing hyperlight velocities we could telegraph into the past” was attributed to Einstein by Arnold Sommerfeld in the discussion session following Ignatowski (1910). Meyerson’s source is Langevin (1911), 44.

  11. Meyerson was perhaps one of the first scholars to challenge the myth of Einstein’s early positivism. In De l’explication dans les sciences (Meyerson 1921), he mentioned as counterexamples Einstein’s work on ‘Brownian motion’, which was meant to prove the reality of atoms (Einstein 1905a), and his attitude toward the microstructure of radiation (Einstein 1905b). In particular, Meyerson quoted Einstein’s remarks at the 1911 Solvay conference (Einstein et al. 1914), in which he insisted on the necessity of constructing a model of light quanta, a request that testifies for his refusal of a phenomenological approach to physics: “To speak only of Einstein, what motivates his whys and how-can-it-be? How can one explain the constant intervention of the image, the physical model, and the fervor with which he demands it? What could the accusation of unlikelihood possibly mean if it were not a question of an actual hypothesis about how phenomena are produced, about what is really going on?” (Meyerson 1921, 1:40; tr. 1991, 38).

  12. The opening paragraph of Einstein (1924a) testifies to the importance that Einstein attributed to the issue of the relation between “experienced reality (as opposed to merely dreamed experience) and thing reality (e.g., sun, hydrogen atom)”. It is worth quoting a relevant passage at length: “Doesn’t an experienced reality exist that one senses directly and that is indirectly also the source of what science denotes as ‘real’? Aren’t, furthermore, the realists right, after all, along with all scientists (who don’t happen to be philosophizing), when by the highly astounding possibility to arrange experiences within a [. . .] conceptual framework they allow themselves to assume that real, existing things are independent of their own thinking and being? Isn’t the incomprehensibility of being able to build a conceptual framework that connects experiences just as painful to the idealistic philosopher (from the logician’s point of view) as accepting the reality hypothesis of the realistic philosopher and of the nonphilosophizing person (and animal)? Is there indeed a difference at all between assuming that the totality of observations, or experiences, permits a logical conceptual framework, which connects them with each other, and accepting the reality hypothesis?” (Einstein 1924a, 1685).

  13. To understand the philosophical background against which Einstein might have read the book, it is useful to consider a not well-known text written about the same time. Toward the end of 1924, Carl D. Groat, the Berlin correspondent of the news agency United Press from Berlin, asked Einstein whether he would be willing to write a series of articles for La Prensa, a prestigious Argentinian journal which used United Press services. The articles were supposed to be published after Einstein’s arrival in Buenos Aires. In one of these articles ‘La física y la esencia de las cosas’, which was published in May of 1925, Einstein offers a simple account of what he thought it was the task of a physicist. The physicist does not limit herself to describe, she “wants to understand” the observable phenomena, say heat, electromagnetism, matter “and know their essence”. However, she “does not know in advance if heat is a phenomenon of movement, if bodies are made of atoms, if electromagnetic phenomena must be explained as the movement of a matter that fills space, et cetera” (Einstein 1925b). In this sense, Einstein wrote, the physicist is similar to someone that tries to understand how a machine works, for instance a loom, but cannot “remove the loom from a box that is impenetrable to the eye, and who must understand its construction through the qualities of the cloth alone or by the sound the loom makes when it is operating” (Einstein 1925b). The physicist must try to elaborate a model of the internal structure of the machine. There are ways to limit the range of possible models one can come up with (e.g., a model that does not satisfy energy conservation had to be rejected in advance). However, ultimately, the physicists can only make reasonable and educated guesses about the mechanism responsible for the warp and weft of the cloth. Thus, the “internal structure will always be hypothetical”, since there is no way to open the box, to look directly how the mechanism would ‘really’ look like. Nevertheless, the physicist “knows what is real about the machine more perfectly than someone who is satisfied with proving perceivable phenomena” (Einstein 1925b, my emphasis), that is, describing the exterior of the box. It is hard to establish whether Einstein wrote this brief article before or after reading Meyerson’s book. In either case, Einstein’s insistence that the physicist wants to understand the ‘real’ and not simply describe it is an undeniably “meyersonnian” theme. Either the text shows Meyerson’s early influence on Einstein or, at least, explains why Einstein found Meyerson’s book appealing.

  14. Schouten (1924) claimed that it was possible to overcome a shortcoming of Einstein-Eddington’s affine theory (in which no electromagnetic field can exist in a place with vanishing electric current density) by dropping the assumption of the symmetry of the affine connection.

  15. Høffding was a Danish philosopher, and Meyerson’s friend and correspondent (Høffding and Meyerson 1939). The irony of the fate, he is usually credited to have had a substantial influence on Bohr’s work (Faye 1991). It is hard to say if Einstein did read the paper Meyerson suggested. However, he might have found there a turn of phrase that he would often use, somehow tongue in cheek, until the end of his life: “the physicist is and always remains a metaphysician” (Høffding 1925, 488; my emphasis).

  16. In hindsight, Einstein’s correspondence and writings in the immediately following months already give us a glimpse into what Einstein found interesting in Meyerson’s book. A few days after he met Meyerson, Einstein sent to Moritz Schlick a brief celebratory article honoring Mach (Einstein to Schlick, Jan. 22, 1926; CPAE, Vol. 15, Doc. 176), who was, however, rather critical of Mach’s sensualism and phenomenalism (Einstein 1926). Moreover, between March and April 1926, Einstein corresponded with Reichenbach, agreeing with him (Einstein to Reichenbach, Apr. 8, 1926; CPAE, Vol. 15, Doc. 235) that general relativity was not in the first instance a geometrization of the gravitational field (Giovanelli 2016). The name of Meyerson was not mentioned in either correspondence. However, both the critique of Mach’s positivism and even more the essential role of geometrization in physics were central issues of Meyerson’s book.

  17. Meyerson was able to follow quite closely these developments through his friend Høffding, which was a friend of Bohr. In a letter written at the end of 1926, Høffding explained to Meyerson that Bohr presented a communication to the Royal Academy on wave mechanics (Bohr 1926–1927). In Høffding’s reconstruction, Bohr suggested “that we cannot decide whether the electron is a wave motion [. . .] or a particle [. . .]. Certain equations lead us to the former inference, certain others to the latter. No picture, no term corresponds to all equations”. According Høffding, Bohr was increasingly more “convinced of the necessity of symbolization if we wish to express the latest findings of physics” (Høffding to Meyerson, Dec. 30, 1926; Høffding and Meyerson 1939, 131).

  18. The passage appears in Metz (1927), 179–180.

  19. A proper ‘classification’ of Meyerson’s work is not an easy task, as Meyerson himself conceded. Meyerson’s investigations do not fit under the category ‘philosophy of science’. Meyerson does not want to understand how the ‘good’, scientific knowledge is different from the ‘bad’, non-scientific one (Meyerson 1931, 14–15). Meyerson, as we have mentioned, was concerned with the ‘philosophy of the scientists’, with the philosophical views that, for better or worse, de facto motivated their research. However, Meyerson did not regard his work as a form of ‘psychology’; he found direct psychological observation untrustworthy, either in introspective or behaviorist form. Meyerson later introduced the expression philosophie de l’intellect (Meyerson 1934b) to indicate that his inquiry was intended to shed light on how the mind works, but through an indirect analysis of its products, particularly scientific theories (Meyerson 1934a).

  20. The comparison between the scientists’ strive for a global deduction and speculative philosophical systems such as Hegel’s philosophy had been introduced by Meyerson in his second monograph (Meyerson 1921) and further restated in his relativity book. Relativists, just like previous scientists, “sought to establish [. . .] nothing less than a true system of universal deduction, in the sense that Cartesian physics or the natural philosophy of Hegel constitutes such a system” (Meyerson 1925, 124; tr. 1985, 88). However, according to Meyerson, on the one hand “the relativistic deduction is more comprehensive than Descartes’s, for it goes beyond the bounds the latter had set for his geometrical explanations” (Meyerson 1925, 127; tr. 1985, 90); on the other hand, it “goes well beyond the limits of Hegel’s deduction. For Hegel intends to deduce only the most general characteristics of reality” (Meyerson 1925, 129; tr. 1985, 91).

  21. Statements like these seem to indicate that Einstein confuses what Meyerson considered the ‘philosophy of the scientists’ with Meyerson’s own ‘philosophy of science’ (see fn. 19). Meyerson claims that scientists, often in contradiction with their own empiricist rhetoric, are actually rationalists and realists, but not that realism and rationalism are a feature of a ‘good’ philosophy of science. The fascination that Einstein felt for Meyerson’s book was probably the consequence of the fact that Meyerson had offered a strikingly good description of his own “motivations for doing research” (Einstein 1918). However, Einstein went beyond Meyerson’s intention when he tried to attribute a normative meaning to this philosophical stance.

  22. According to Meyerson, scientists search for “an object whose reality is in all respects analogous to the reality of common sense objects” (Meyerson 1925, 19; tr. 1985, 19). They are persuaded of the existence of the theoretical entities of science “by reasoning analogous to that by which common sense is persuaded of the existence of any object whatsoever, namely because this assumption accounts for a whole series of observed phenomena” (Meyerson 1925, 21; tr. 1985, 20f.). According to Meyerson, scientists actually believe that “the entities created by science” and “destined to be substituted for those of common sense” are “necessarily [. . .] more detached, more independent of the subject, that is to say, more real, than the latter. This is true, for example, in the case of the atoms or electrons that are to replace the material bodies of our spontaneous perception” (Meyerson 1925, 29f.; tr. 1985, 25).

  23. Meyerson indeed emphasizes that “[i]n relativistic physics as in physics in general, the tendency toward idealism coexists side by side with realistic convictions” (Meyerson 1925, 144; tr. 1985, 100). “Although the Einsteinian physicist, like all physicists, is basically a realist,” he wrote, “the very success of his deduction leads him to a structure that is just as basically idealistic” (Meyerson 1925, 143; tr. 1985, 99). In Meyerson’s view, science is somehow driven by the contrast “between the vigorously realistic thought of the physicist and the ultimate goal of his science, which is necessarily idealistic since it aims at an explanation of the whole, a deduction of the whole from the content of reason” (Meyerson 1925, 251; tr. 1985, 168).

  24. Toward the end of the book Meyerson seems to suggest that ‘relativism’ might even be seen as the sign that the structure reason has changed in the attempt to accommodate reality; cf. the next footnote.

  25. Meyerson indeed repeatedly insists that “the relativistic explanation, unlike those that preceded it, [is] geometrical. In relativism, taken to its logical conclusion, everything is geometry and only geometry, while in mechanical theories geometry is simply applied to concepts of a nongeometrical nature, such as the chemical atom, the material particle, etc” (Meyerson 1925, 29f.; tr. 1985, 84f.). In support of his claim, Meyerson could cite (Meyerson 1925, 125; tr. 1985, 89) Weyl’s famous dictum that relativism has achieved “Descartes’s dream of a purely geometrical physics” (Weyl 1921c, 258). However, Einstein did not seem to have understood the motivation beyond Meyerson’s insistence on the importance of geometrical explanations. In Meyerson’s view, relativists simply share the same physicists’ preference for spatial explanations on which he had insisted in his previous works. This preference is nothing but the consequence of the general tendency of the human mind to strive for ‘identity’. The physicist, Meyerson writes, “always explains [. . .] in spatial terms; he is constantly dominated by the concern to reduce all diversity to a purely spatial diversity” (Meyerson 1925, 138f.; tr. 1985, 97). However, reality resists this process of identification; relativism “cannot eliminate all diversity; therefore, while physics becomes simpler, the geometry that replaces it must become more complex” (Meyerson 1925, 150; tr. 1985, 104). In particular, according to Meyerson, to spatialize the phenomena, relativity was forced to introduce a non-homogenous space. In this way, however, relativism renegades the very nature of spatial explanation, which was based on the indifference of space respect to its contents: “the term space signifies something very different from what it has designated in physics until now” (Meyerson 1925, 365; tr. 1985, 238). In this sense, as a consequence of relativism, “scientific reason must obviously do violence to itself to some extent” (Meyerson 1925, 366; tr. 1985, 239). Thus Meyerson reached a quite surprising conclusion: either relativism will turn out to be only a transitory phase of science, or, so to say, it has forced reason to modify itself (Meyerson 1925; tr. 1985, §278).

  26. In English in the text.

  27. Not in the original German: “It seems to me that, everything considered, the author completely shares this point of view, for he often insists that relativistic thought is essentially in conformity with the laws and general tendencies science had already manifested earlier” (Einstein 1928a, 163; tr. 1985, 253).

  28. Not in the original German: “Consequently, I believe that the term ‘geometrical’ used in this context is entirely devoid of meaning. Furthermore, the analogy Meyerson sets forth between relativistic physics and geometry is much more profound. Examining the revolution caused by the new theories from the philosophical point of view, he sees in it the manifestation of a tendency already indicated by previous scientific progress, but even more visible here— a tendency to reduce ‘diversity’ to its simplest expression, that is, to dissolve it into space. Meyerson shows in the theory of relativity that this complete reduction, which was the dream of Descartes, is in reality impossible” (Einstein 1928a, 165; tr. 1985, 255).

  29. Not in the original German: “The tendency he denounces, though often only latent in the mind of the physicist, is nonetheless real and profound, as is unequivocally shown by the extravagances of the popularizers, and even of many scientists, in their expositions of relativity” (Einstein 1928a, 166; tr. 1985, 255).

  30. Cf. fn. 25.

  31. Einstein received the galley proofs of Reichenbach’s Philosophie der Raum-Zeit-Lehre (Reichenbach 1928) at the end of 1927 (Einstein to Reichenbach, Dec. 1, 1927; EA, 20-090) and published a review (Einstein 1928c) short thereafter.

  32. Cf. fn. 13.

  33. The name of Sommerfeld is not mentioned by Frank here, but the physicist in question is undoubtedly Sommerfeld. See, e.g., the reconstruction of the same episode in Frank and Kuhn (1962).

  34. The correspondence between Grelling and Meyerson about the translation is preserved in CZA, A408/56.

  35. On Mathisson cf. Havas 1989, 242f. Sauer and Trautman (2008).

  36. The failure of the new quantum mechanics of producing a ‘model’ is a common theme of Einstein’s writings of this period. In a brief text written in December 1930, a later published in the The Yale University Library Gazette Einstein expressed the same complaint upon which he touches in Schlick’s letter. In searching for a unified field theory, “as in the earlier theory an attempt is made to construct a model of real” (Einstein 1930b, 3), which explains the result of our measurements and observations through the behavior of some basic entities (fields, particles etc.). However, in Einstein’s view, quantum mechanics abdicated the historical task of natural science: Quantum theory fully “renounces the possibility of constructing a model of reality. The variables appearing in its equations specify only probabilities, not actualities” (Einstein 1930b, 4). However, as he put it in a longer unpublished version of the text, Einstein was convinced “that the renunciation to model of realty would not be advantageous in the long run” (EA, 2-111.1, 7). The use of the word ‘model’, as Einstein explained elsewhere, expresses the “speculative nature of science” (Einstein 1932, 363). Physicists initially aimed to directly describe ‘real things’ but progressively realized that they could only construct abstract models (Einstein 1932, 363), which can be said to be more or less useful, but not ‘true’. Quantum theory went so far as to forgo even the ‘the model-character’ of physics (Einstein 1932, 363).

  37. In this regard, the textual evidence is overwhelming. In July 1930, in a conversation with Rabindranath Tagore, Einstein admitted that he could not prove the reality of the external world, but he described such a belief as his religious credo: “there is a reality independent of human beings, there is also a Truth relative to this reality” (Einstein and Tagore 1930, 4). The one claim cannot stand without the other. This conviction lies at the basis of common sense experience: “Even in our everyday life, we feel compelled to ascribe a reality independent of man to the objects we use. We do this to connect the experiences of our senses in a reasonable way. For instance, if nobody is in this house, yet that table remains where it is” (Einstein and Tagore 1930, 4). As Einstein put it in an article written for the celebration of Maxwell’s death centenary (Blackett to Einstein, Dec. 30, 1930; EA, 1-99) and finished in April 1931, the same belief is held in scientific practice: “The belief in an external world independent of the perceiving subject is the basis of all natural science” (Einstein 1931a, 1; tr. 1931b, 1). However, since sensation gives us information about the real only indirectly, “we can only grasp the latter by speculative means” (Einstein 1931a, 1; tr. 1931b, 1; my emphasis). It is quantum mechanics that has abdicated science’s responsibility of understanding the real in the name of a tranquilizing positivism. Einstein insisted on this point in an unpublished document that must have been written toward the end of 1931: “many positivists” believe that the only end of science is “to establish connections between the facts of experience, of such a kind that we can predict further occurrences from those already experience” (EA, 2110-0, 1f.). However, if one looks at science not as a finished product, but at the motivations that drive scientists’ practice, one cannot remain satisfied with this description: “There lurks a stronger, more mysterious drive: one wishes to comprehend [begreifen], the being [das Seiende], the real [das Wirkliche]” (EA, 2110-0, 1f.), driven by the “the belief that the being [das Seiende] should have a completely harmonious structure” (EA, 2110-0, 4.).

  38. At end of 1931, Cornelius Lanczos (Lanczos to Einstein, Oct. 20, 1931; EA, 15-243) communicated to Einstein that he had written a semi-popular presentation of distant parallelism approach for the Ergebnisse der Exakten Wissenschaften, a series sponsored by Berliner’s journal (Lanczos 1931). Lanczos worked on the topic during his tenure as Einstein’s assistant. Lanczos exposed his own ideas, but he was confident to have found “a tone that should correspond to your conviction as well. I think that, deep down, we have something in common” (Lanczos to Einstein, Oct. 20, 1931; EA, 15-243). In the paper, Lanczos distinguished between a positivist-subjectivist interpretation of relativity theory and a metaphysical-realistic perspective. In his Einstein-biography Frank recalls that, reading a partial reprint of Lanczos’ paper (Lanczos 1932), he was “quite astonished” to find the theory of relativity characterized as the expression of a realist program “since I had been accustomed to regarding it as a realization of Mach’s program” (Frank 1947, 215). However, around 1932, he discussed the matter with Einstein who confirmed Lanczos’ views: the essential point of relativity theory, he explained to Frank, is to “regard an electromagnetic or gravitational field as a physical reality in the same sense that matter had formerly been considered so” (Frank 1947, 216).

  39. ‘Brilliant’ was the English translation of Geistreich in the Times article (Einstein 1929c).

Abbreviations

CPAE:

Albert Einstein (1987–). The Collected Papers of Albert Einstein. Ed. by John Stachel et al. 15 vols. Princeton: Princeton University Press, 1987–

CZA:

Central Zionist Archives. Jerusalem

EA:

The Albert Einstein Archives at the Hebrew University of Jerusalem

EMLF:

Émile Meyerson (2009). Lettres françaises. Ed. by Bernadette Bensaude-Vincent and Eva Telkes-Klein. Paris: Cnrs Editions, 2009

ESBW:

Karl von Meyenn, ed. (2011). Eine Entdeckung von ganz außerordentlicher Tragweite. Schrödingers Briefwechsel zur Wellenmechanik und zum Katzenparadoxon. Berlin/Heidelberg: Springer, 2011

SN:

Schlick Nachlass. Noord-Hollands Archief, Haarlem

WPWB:

Wolfgang Pauli (1979–). Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a. Ed. by Karl von Meyenn. 4 vols. Berlin/Heidelberg: Springer, 1979–.

References

  • Abbagnano, N. (1929). La filosofia di É. Meyerson e la logica dell’identità. Napoli: Perrela.

    Google Scholar 

  • Althusser, L. (1967). Philosophie et philosophie spontanée des savants. Paris: Maspero.

    Google Scholar 

  • Bacciagaluppi, G, & Valentini, A (Eds.). (2009). Quantum theory at the crossroads. Reconsidering the 1927 Solvay conference. Cambridge: Cambridge Univerity Press.

  • Bachelard, G. (1934). Le nouvel esprit scientifique. Paris: Alcan.

    Google Scholar 

  • Balibar, F. (2010). Einstein et Meyerson. Éloges et malentendus. In B. Bensaude-Vincent (Ed.) Corpus. Revue de philosophie 58: Émile Meyerson (pp. 63–80).

  • Bavink, B. (1930). Ergebnisse und Probleme der Naturwissenschaften. Eine Einführung in die heutige Naturphilosophie, 4th edn. Leipzig: Hirzel.

    Google Scholar 

  • Beller, M. (1988). Experimental accuracy, operationalism, and limits of knowledge. 1925 to 1935. Science in Context, 2, 147–162.

    Google Scholar 

  • Beller, M. (1990). Born’s probabilistic interpretation. A case study of ‘concepts in Flux’. Studies in History and Philosophy of Science. Part B: Studies in History and Philosophy of Modern Physics, 21, 563–588.

    Google Scholar 

  • Ben Menahem, Y. (2006). Conventionalism. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ben Menahem, Y. (2010). Émile Meyerson et la théorie de la relativité. In Y. Elhanan, & E. Telkes-klein (Eds.) L’Histoire et la philosophie des sciences à la lumiére de l’œuvre d’Émile Meyerson (pp. 133–150). Paris: Honoré Champion.

  • Bensaude-Vincent, B. (1988). When a physicist turns on philosophy. Paul Langevin (1911–39). Journal of the History of Ideas, 49, 319–338.

    Google Scholar 

  • Bensaude-Vincent, B. (Ed.) (2010). Corpus. Revue de philosophie 58: Émile Meyerson.

  • Bensaude-Vincent, B, & Telkes-Klein, E. (2009). Introduction. In B. Bensaude-Vincent, & E. Telkes-Klein (Eds.) Meyerson, Émile. Lettres françaises (pp. 3–23). Paris: Cnrs Editions.

  • Bensaude-Vincent, B, & Telkes-Klein, E. (2016). Les identités multiples d’Émile Meyerson. Paris: Honoré Champion.

    Google Scholar 

  • Biezunski, M. (1992). Einstein à Paris. Le temps n’est plus... Saint-denis: Presses Universitaires De Vincennes.

    Google Scholar 

  • Bitbol, M. (2010). Aux rives de l’île de la raison. Meyerson et la physique quantique. In B. Bensaude-Vincent (Ed.) Corpus. Revue de philosophie 58: Émile Meyerson (pp. 81–98).

  • Blumberg, AE. (1929). Die Philosophie von Émile Meyerson und der Positivismus.” PhD thesis. Universität Wien.

  • Blumberg, AE. (1932). Émile Meyerson’s critique of positivism. The Monist, 42, 60–79.

    Google Scholar 

  • Boas, G. (1930). A critical analysis of the philosophy of Émile Meyerson. Baltimore: The John Hopkins Press.

    Google Scholar 

  • Bohr, N. (1926–1927). Atomteori og Bølgemekanik. Communication to the Royal Danish Academy on December 17, 1926. Oversigt Over det Kongelige Danske Videnskabernes Selskabs Forhandlinger og dets Medlemmers Arbeider, 28–29. Repr. in Bohr, 1972–2006, Vol. 6, Doc. 52.

  • Bohr, N. (1972–2006). In L. Rosenfeld (Ed.) Collected works (12 vols.). Amsterdam, New York/Oxford: North-Holland.

  • Born, M. (1925). Vorlesungen über Atommechanik. Erster Band. Berlin: Springer.

    Google Scholar 

  • Born, M. (1926a). Problems of atomic dynamics. Cambridge: Massachusetts Institute of Technology.

    Google Scholar 

  • Born, M. (1926b). Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik, 37, 863–867.

    Google Scholar 

  • Born, M, & Jordan, P. (1925). Zur Quantenmechanik. Zeitschrift für Physik, 34, 858–888.

    Google Scholar 

  • Born, M, Heisenberg, W, Jordan, P. (1926). Zur Quantenmechanik, II. Zeitschrift für Physik, 35, 557– 615.

    Google Scholar 

  • Brunschvicg, L. (1926). La philosophie d’Émile Meyerson. Revue de Métaphysique et de Morale, 33, 39–63.

    Google Scholar 

  • Canales, J. (2015). The physicist and the philosopher. Einstein, Bergson and the debate that changed our understanding of time. Princeton: Princeton University Press.

    Google Scholar 

  • Cassirer, E. (1921). Zur Einsteinschen Relativitätstheorie. Erkenntnistheoretische Betrachtungen. Berlin: B. Cassirer. Repr. in Cassirer, 1998–, Vol. 10.

    Google Scholar 

  • Chimisso, C. (2016). Writing the history of the mind. Philosophy and science in France, 1900 to 1960s. London: Routledge.

    Google Scholar 

  • Chimisso, C, & Freudenthal, G. (2003). A mind of her own. Héléne Metzger to Émile Meyerson, 1933. Isis, 94, 477–491.

    Google Scholar 

  • Corry, L. (1998). The influence of David Hilbert and Hermann Minkowski on Einstein’s views over the interrelation between physics and mathematics. Endeavour, 22, 95–97.

    Google Scholar 

  • Cunningham, E. (1921). Relativity, electron theory and gravitation. London/Bombay: Longmans, Green/Co.

    Google Scholar 

  • de Broglie, L, & et al. (1929). Déterminisme et causalité dans la physique contemporaine. Discussion: E. Borel, A. E.nstein, J. Hadamard, P. Langevin, X. Léon, R. Lenoir, E. le Roy, J. Perrin. Appendice: Lettres de G. Bénézé, A. Metz. Bulletin de la Société Française de Philosophie 1917 (pp. 91–113).

  • de la Harpe, J. (1925). L’œuvre philosophique d’Émile Meyerson. La marche vers l’identité. Revue de Théologie et de Philosophie, 13, 278.

    Google Scholar 

  • Dirac, PAM. (1925). The fundamental equations of quantum mechanics. Proceedings of the Royal Society of London, 109, 642–653.

    Google Scholar 

  • Dirac, PAM. (1928a). The quantum theory of the electron. Proceedings of the Royal Society of London, 117, 610–624.

    Google Scholar 

  • Dirac, PAM. (1928b). The quantum theory of the electron. II. Proceedings of the Royal Society of London, 118, 351–361.

    Google Scholar 

  • During, É. (2010). Entre Bergson et saint Thomas. La correspondance Metz-Meyerson. In B. Bensaude-Vincent (Ed.) Corpus. Revue de philosophie 58: Émile Meyerson (pp. 235–254).

  • Eddington, AS. (1920). Space, time and gravitation. An outline of the general relativity theory. Cambridge: Cambridge University Press.

    Google Scholar 

  • Eddington, AS. (1921). A generalization of Weyl’s theory of the electromagnetic and gravitation fields. Proceedings of the Royal Society London, 99, 104–121.

    Google Scholar 

  • Einstein, A. (1905a). Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik, 14th ser. 17, 549–560. Repr. in CPAE, Vol. 2, Doc. 16.

    Google Scholar 

  • Einstein, A. (1905b). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik, 14th ser. 17, 132–148. Repr. in CPAE, Vol. 2, Doc. 14.

    Google Scholar 

  • Einstein, A. (1914). Zum gegenwärtigen Stande des Problems der spezifischen Wärme. In A. Eucken (Ed.) Die Theorie der Strahlung und der Quanten. Verhandlungen auf einer von E. Solvay einberufenen Zusammenkunft (30. Oktober bis 3. November 1911), mit einem Anhange über die Entwicklung der Quantentheorie vom Herbst 1911 bis Sommer 1913. Repr. in CPAE, Vol. 3, Doc. 26 (pp. 330–352). Halle: Knapp.

  • Einstein, A. (1918). Motive des Forschens. In E. Warburg et al. (Ed.) Zu Max Plancks sechzigstem Geburtstag. Ansprachen, gehalten am 26. April 1918 in der Deutschen Physikalischen Gesellschaft von E. Warburg, M. v. Laue, A. Sommerfeld und A. Einstein. Repr. in CPAE, Vol. 7, Doc. 7 (pp. 29–32). Karlsruhe: C. F. Müllersche Hofbuchhandlung.

  • Einstein, A. (1919). Spielen Gravitationsfelder im Aufbau der materiellen Elementarteilchen eine wesentliche Rolle? Sitzungsberichte der Preußischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (pp. 349–356). Repr. in CPAE, Vol. 7, Doc. 17.

  • Einstein, A. (1920). Grundgedanken und Methoden der Relativitätstheorie, in ihrer Entwicklung dargestellt. Jan. 22, 1920. Unpublished 35-page draft of an article for Nature. Published in CPAE, Vol. 7, Doc. 31.

  • Einstein, A. (1921). Über eine naheliegende Ergänzung des Fundamentes der allgemeinen Relativitätstheorie. Sitzungsberichte der Preußischen Akademie der Wissenschaften, Halbband 1, 261–264. Repr. in CPAE, Vol. 7, Doc. 54.

  • Einstein, A. (1923a). Antwort über Religionsfrage. Kaizo, 5, 194–195 and 197.

    Google Scholar 

  • Einstein, A. (1923b). Bietet die Feldtheorie Möglichkeiten für die Lösung des Quantenproblems. Sitzungsberichte der Preußischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (pp. 359–364). Repr. in CPAE, Vol. 14, Doc. 170.

  • Einstein, A. (1923c). Discurso de Einstein. ABC. Mar. 9, 1923. Spanish translation of the Einstein’s honorary doctorate speech held at the University of Madrid on March 8, 1922. Repr. in CPAE, 13, Appendix I.

  • Einstein, A. (1923d). Grundgedanken und Probleme der Relativitätstheorie. In C.G. Santesson (Ed.) Les Prix Nobel en 1921–1922. July 1923, 1–10. Repr. in CPAE, Vol. 14, Doc. 75. Stockholm: Nobel Foundation.

  • Einstein, A. (1923e). The theory of the affine field. Nature, 2812, 448–449. Repr. in CPAE, Vol. 14, Doc. 123.

    Google Scholar 

  • Einstein, A. (1923f). Zur affinen Feldtheorie. Sitzungsberichte der Preußischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (pp. 137–140). Repr. in CPAE, Vol. 14, Doc. 52.

  • Einstein, A. (1923g). Zur allgemeinen Relativitätstheorie. Sitzungsberichte der Preußischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (pp. 32–38, 76–77). Repr. in CPAE, Vol. 13, Doc. 425.

  • Einstein, A. (1924a). Review of Elsbach, Kant und Einstein [Elsbach, 1924]. Deutsche Literaturzeitung, 45, 1685–1692.

    Google Scholar 

  • Einstein, A. (1924b). Review of Winternitz, Relativitätstheorie und Erkenntnislehre [Winternitz, 1923]. Deutsche Literaturzeitung, 45, 20–22.

    Google Scholar 

  • Einstein, A. (1925a). Einheitliche Feldtheorie von Gravitation und Elektrizität. Sitzungsberichte der Preußischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (pp. 414–419). Repr. in CPAE, Vol. 15, Doc. 17.

  • Einstein, A. (1925b). La física y la esencia de las cosas. May 3, 1925. Repr. in CPAE, Vol. 14, Doc. 481.

  • Einstein, A. (1926). Zur Enthüllung von Ernst Machs Denkmal. Neue Freie Presse. June 12, 1926. Repr. in CPAE, Vol. 15, Doc. 303.

  • Einstein, A. (1927a). Bespr. von Meyerson, La déduction relativiste [Meyerson, 1925]. EA, 068. German manuscript of Einstein, 1928a; Eng. tr. in; Meyerson, 1985, Appendix I, 252–256.

  • Einstein, A. (1927b). [Greetings for the Commemoration of Newton’s Bicentenary]. EA, 1058. Repr. in CPAE, Vol. 15, Doc. 494.

  • Einstein, A. (1927c). Newtons Mechanik und ihr Einfluß auf die Gestaltung der theoretischen Physik. Die Naturwissenschaften, 15, 273–276. Repr. in CPAE, Vol. 15, Doc. 503.

    Google Scholar 

  • Einstein, A. (1927d). Über die formale Beziehung des Riemannschen Krümmungstensors zu den Feldgleichungen der Gravitation. Mathematische Annalen, 97, 99–103.

    Google Scholar 

  • Einstein, A. (1927e). Zu Isaak Newtons 200. Todestage. Nord und Süd: Monatsschrift für internationale Zusammenarbeit, 50, 36–40. Repr. in CPAE, Vol. 15, Doc. 506.

    Google Scholar 

  • Einstein, A. (1927f). Zu Kaluzas Theorie des Zusammenhanges von Gravitation und Elektrizität. Erste und zweite Mitteilung. Sitzungsberichte der Preußischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, 23–25, 26–30.

  • Einstein, A. (1928a). A propos de ‘La Déduction Relativiste’ de M. ÉmileMeyerson [Meyerson, 1925]. Revue Philosophique de la France et de l’étranger, 105, 161–166.

    Google Scholar 

  • Einstein, A. (1928b). Neue Möglichkeit für eine einheitliche Feldtheorie von Gravitation und Elektrizität. Sitzungsberichte der Preußischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse (pp. 224–227).

  • Einstein, A. (1928c). Review of Reichenbach, Philosophie der Raum-Zeit-Lehre [Reichenbach, 1928]. Deutsche Literaturzeitung, 49, 19–20.

    Google Scholar 

  • Einstein, A. (1928d). Riemanngeometrie mit Aufrechterhaltung des Begriffes des Fern-Parallelismus. Sitzungsberichte der Preußischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (pp. 217–221).

  • Einstein, A. (1929a). Altes und Neues zur Feldtheorie. EA, 4–31.

  • Einstein, A. (1929b). Einstein explains his new discoveries. New York Times. Feb. 3, 1929.

  • Einstein, A. (1929c). The new field theory. London Times. Feb. 4, 1929.

  • Einstein, A. (1929d). Über den gegenwärtigen Stand der Feldtheorie. In E. Honegger (Ed.) Festschrift zum 70. Geburtstag von Prof. Dr. A. Stodola (pp. 126–132). Zürich/Leipzig: Füssli.

  • Einstein, A. (1929e). Zur einheitlichen Feldtheorie. Sitzungsberichte der Preußischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (pp. 2–7).

  • Einstein, A. (1930a). Théorie unitaire du champ physique. Annales de l’Institut Henri Poincaré, 1, 1–24.

    Google Scholar 

  • Einstein, A. (1930b). Über den gegenwärtigen Stand der allgemeinen Relativitätstheorie. The Yale University Library Gazette, 6, 3–6. Eng. tr. by Leigh Page, 7–10.

    Google Scholar 

  • Einstein, A. (1931a). Maxwells Einfluss auf die Entwicklung der Auffassung des Physikalisch-Realen. EA, 1–97.

  • Einstein, A. (1931b). Maxwell’s influence on the development of the conception of physical reality. In J. C. Maxwell (Ed.) A commemoration volume (pp. 66–73). Cambridge: Cambridge University Press.

  • Einstein, A. (1932). Bemerkungen über den Wandel der Problemstellungen in der theoretischen Physik. In Emanuel Libman Anniversary Volumes (pp. 363–364). New York: The International Press.

  • Einstein, A. (1933a). On the method of theoretical physics. The Herbert Spencer Lecture, delivered at Oxford, June 10, 1933. Oxford: Clarendon Press. See Einstein 1933b for the original German.

    Google Scholar 

  • Einstein, A. (1933b). Zur Methode der theoretischen Physik. EA, 1114.1.

  • Einstein, A. (1936). Physik und Realität/Physics and reality. Journal of the Franklin Institute, 221, 313–347. Eng. tr. by J. Picard, 349–382.

    Google Scholar 

  • Einstein, A. (1949). Autobiographical notes. In P.A. Schilpp (Ed.) , Albert Einstein, Philosopher-Scientist. Philosopher-Scientist (pp. 2–94). Evanston: The Library of Living Philosophers.

  • Einstein, A. (1950). On the generalized theory of gravitation. Scientific American, 182, 13–17.

    Google Scholar 

  • Einstein, A. (1953). Einleitende Bemerkungen über Grundbegriffe. In A. George (Ed.) Louis de Broglie. Physicien et penseur (pp. 5–15). Paris: Michel.

  • Einstein, A., & Bergmann, P. G. (1938). On a generalisation of Kaluza’s theory of electricity. Annals of Mathematics, 39, 683–701.

    Google Scholar 

  • Einstein, A, & Grommer, J. (1923). Beweis der Nichtexistenz eines überall regulären zentrisch symmetrischen Feldes nach der Feldtheorie von Kaluza. Scripta Universitatis atque Bibliothecae Hierosolymitanarum: Mathematica et Physica, 1, 1–5. Repr. in CPAE, Vol. 13, Doc. 12.

    Google Scholar 

  • Einstein, A, & Grommer, J. (1927). Allgemeine Relativitätstheorie und Bewegungsgesetz. Sitzungsberichte der Preußischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (pp. 2–13).

  • Einstein, A, & Mayer, W. (1932). Semi-Vektoren und Spinoren. Sitzungsberichte der Preußischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (pp. 522–550).

  • Einstein, A, & Mayer, W. (1933a). Dirac Gleichungen für Semi-Vektoren. Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam, 36, 497.

    Google Scholar 

  • Einstein, A, & Mayer, W. (1933b). Spaltung der natürlichsten Feldgleichungen für Semi-Vektoren in Spinor-Gleichungen vom Diracschen Typus. Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam, 36, 615–619.

    Google Scholar 

  • Einstein, A, & Mayer, W. (1934). Darstellung der Semi-Vektoren als gewöhnliche Vektoren von besonderem Differentiations Charakter. Annals of Mathematics, 35, 104–110.

    Google Scholar 

  • Einstein, A, & Tagore, R. (1930). Über das Wesen der Wirklichkeit. EA, 72-464.

  • Einstein, A, & et al. (1914). Discussion; Following the Lecture Version of ‘Zum gegenwärtigen Stande des Problems der spezifischen Wärme’ (Einstein, 1914). In A. Eucken (Ed.) Die Theorie der Strahlung und der Quanten. Verhandlungen auf einer von E. Solvay einberufenen Zusammenkunft (30. Oktober bis 3. November 1911), mit einem Anhange über die Entwicklung der Quantentheorie vom Herbst 1911 bis Sommer 1913 (Vol. 3, pp. 353–364). Printed version of the discussion held on November 3, 1911 following presentation of Einstein’s paper at the first Solvay Congress in Brussels; repr. in CPAE, Vol. 3, Doc. 27. Halle: Knapp.

  • Einstein, A, & et al. (1922). La théorie de la relativité? Interventions sur la théorie de la relativité par X. Leon, P. Langevin, J. Hadamard, A. Einstein, É. Cartan, P. Painlevé, P. Levy, J. Perrin, J. Becquerel, L. Brunschvicg, É. Le Roy, H. Bergson, É. Meyerson, et H. Pieron. Bulletin de la Société Française de Philosophie, 22, 91–113.

    Google Scholar 

  • Einstein, A, Podolsky, B Y, Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47, 777–780.

    Google Scholar 

  • Elsbach, AC. (1924). Kant und Einstein. Untersuchungen über das Verhältnis der modernen Erkenntnistheorie zur Relativitätstheorie. Berlin: de Gruyter. Repr. in CPAE, Vol. 14, Doc. 321.

    Google Scholar 

  • Fabre, L. (1921). Une nouvelle figure du monde. Les théories d’Einstein. Paris: Payot.

    Google Scholar 

  • Faye, J. (1991). Niels Bohr. His heritage and legacy. An anti-realist view of quantum mechanics. Dordrecht: Springer.

    Google Scholar 

  • Feigl, H. (1929). Theorie und Erfahrung in der Physik. Karlsruhe: Braun.

    Google Scholar 

  • Fine, A. (1986). The shaky game. Einstein, realism, and the quantum theory. Chicago: University of Chicago Press.

    Google Scholar 

  • Frank, P. (1930). Was bedeuten die gegenwärtigen physikalischen Theorien für die allgemeine Erkenntnislehre?. Die Naturwissenschaften, 17, 987–994.

    Google Scholar 

  • Frank, P. (1947). Einstein. His life and times. New York: Knopf.

    Google Scholar 

  • Frank, P, & Kuhn, T. (1962). Interview of Philipp Frank by Thomas S. Kuhn on July 16, 1962. College Park: Niels Bohr Library & Archives, American Institute of Physics. July 16, 1962. http://www.aip.org/history-programs/niels-bohr-library/oral-histories/4610.

    Google Scholar 

  • Friedman, M. (2002). Geometry as a branch of physics. Background and context for Einstein’s ‘geometry and experience’. In D. Malament (Ed.) Reading natural philosophy (pp. 193–229). Chicago-La Salle: Open Court.

  • Fruteau de Laclos, F. (2007). Émile Meyerson et le Cercle de Vienne. Conception anthropologique des sciences contre conception scientifique du monde. Austriaca 63: Autriche-France. Transferts d’idées–histoires paralléles? Sciences, Philosophie, Droit, Politique, 85–98.

  • Fruteau de Laclos, F. (2009). L’épistémologie d’Émile Meyerson. Une anthropologie de la connaissance. Paris: Vrin.

    Google Scholar 

  • Giovanelli, M. (2013). Talking at cross-purposes. How Einstein and the logical empiricists never agreed on what they were disagreeing about. Synthese, 190(17), 3819–3863.

    Google Scholar 

  • Giovanelli, M. (2014). ‘But one must not legalize the mentioned sin’. Phenomenological vs. dynamical treatments of rods and clocks in Einstein’s thought. Studies in History and Philosophy of Science. Part B: Studies in History and Philosophy of Modern Physics, 48, 20–44.

    Google Scholar 

  • Giovanelli, M. (2015). ‘Das Problem in ein Postulat verwandeln’: Cassirer und Einsteins Unterscheidung von konstruktiven und Prinzipien-Theorien. In M. Neuber (Ed.) , Husserl, Cassirer, Schlick - ‘Wissenschaftliche Philosophie’ im Spannungsfeld von Phänomenologie, Neukantianismus und logischem Empirismus (pp. 150–175). Vienna: Springer.

  • Giovanelli, M. (2016). ‘... But I still can’t get rid of a sense of artificiality’: the Einstein-Reichenbach debate on the geometrization of the electromagnetic field. Studies in History and Philosophy of Science. Part B: Studies in History and Philosophy of Modern Physics, 54, 35–51.

    Google Scholar 

  • Goenner, H.F.M. (2004). On the history of unified field theories. Living Reviews in Relativity, 7. http://www.livingreviews.org/lrr-2004-2.

  • Hahn, H. (1930). Review of Meyerson, Identität und Wirklichkeit [Meyerson, 1930a]. Monatshefte für Mathematik und Physik, 37, A31–A33.

    Google Scholar 

  • Hahn, H. (1933). Review of Meyerson, Du cheminement de la penseé [Meyerson, 1931]. Monatshefte für Mathematik und Physik, 40, A1–A2.

    Google Scholar 

  • Halpern, O, & Thirring, H. (1928). Die Grundgedanken der neueren Quantentheorie. Zweiter Teil: Die Weiterentwicklung seit 1926. Ergebnisse der exakten naturwissenschaften, 8, 367–508.

    Google Scholar 

  • Havas, P. (1989). The early history of the ‘problem of motion’ in general relativity. In D. Howard, & J. Stachel (Eds.) Einstein and the history of general relativity. Proceedings of the 1986 Osgood Hill Conference, North Andover, Massachusetts, May 8 to 11, 1986 (pp. 234–276). Birkhäuser: Boston.

  • Heidelberger, M. (1988). History of science and criticism of positivism. Meyerson’s and Metzger’s views from a present day perspective. In G. Freudenthal (Ed.), Corpus. Revue de Philosophie 8/9: Héléne Metzger (pp. 151–160).

  • Heisenberg, W. (1925). Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik, 33, 879–893.

    Google Scholar 

  • Heisenberg, W. (1966). Der Teil und das Ganze. Gespräche im Umkreis der Atomphysik. München: R. Piper & Co Verlag.

    Google Scholar 

  • Heisenberg, W, & Kuhn, T. (1963). Interview of Werner Heisenberg by Thomas S. Kuhn on February 23, 1963. College Park: Niels Bohr Library & Archives, American Institute of Physics. Feb. 23, 1963. http://www.aip.org/history-programs/niels-bohr-library/oral-histories/4661-8.

  • Hentschel, K. (1982). Zur Rolle Hans Reichenbachs in den Debatten um die Relativitätstheorie (mit der vollständigen Korrespondenz Reichenbach-Friedrich Adler im Anhang). Nachrichtenblatt der Deutschen Gesellschaft für Geschichte der Medizin, Naturwissenschaft & Technik, 3, 295–324.

    Google Scholar 

  • Hentschel, K. (1986). Die Korrespondenz Einstein-Schlick. Zum Verhältnis der Physik zur Philosophie. Annals of Science, 43, 475–488.

    Google Scholar 

  • Hentschel, K. (1987). Einstein, Neokantianismus und Theorienholismus. Kant-Studien, 78, 459–470.

    Google Scholar 

  • Hentschel, K. (1990). Interpretationen und Fehlinterpretationen der speziellen und der allgemeinen Relativitätstheorie durch Zeitgenossen Albert Einsteins. Basel et al: Birkhäuser.

  • Høffding, H. (1925). Émile Meyerson’s erkenntnistheoretische Arbeiten. Kant-Studien, 30, 484–494.

    Google Scholar 

  • Høffding, H, & Meyerson, É. (1939). In F. Brandt, & J. Adigard des Gautries (Eds.) , Correspondance entre Harald Høffding et Émile Meyerson. Copenhagen: Einar Munksgaard.

  • Holton, G. (1968). Mach, Einstein, and the search for reality. Daedalus, 97, 636–673. Repr. in: Thematic Origins of Scientific Thought, Cambridge: Harvard University Press, 1973.

    Google Scholar 

  • Howard, D. (1985). Einstein on locality and separability. Studies in History and Philosophy of Science, 16, 171–201.

    Google Scholar 

  • Howard, D. (1990). Einstein and Duhem. Synthese, 83, 363–384.

    Google Scholar 

  • Howard, D. (1993). Was Einstein a realist? Perspectives on Science, 1, 204–251.

    Google Scholar 

  • Howard, D. (1994). Einstein, Kant and the origins of logical empiricism. In W.C. Salmon, & G. Wolters (Eds.) , Logic, Language, and the structure of scientific theories. Proceedings of the Carnap-Reichenbach Centennial, University of Konstanz, May 21 to 25, 1991 (pp. 45–105). Pittsburgh/Konstanz: University of Pittsburgh Press/Universitätsverlag Konstanz.

  • Howard, D. (1998). ‘And that was the way it was’. On the historiography of the philosophy of science. Invited paper delivered at the conference on ‘Philosophical Problems in the Historiography of Science,’ University of Pittsburgh, Pittsburgh, Pennsylvania, November 14 to 15, 1998.

  • Howard, D. (2011). Philosophy of science and the history of science. In S. French, & J. Saatsi (Eds.) The continuum companion to the philosophy of science (pp. 55–71). London/New York: Continuum.

  • Howard, D. (2014). Einstein and the development of twentieth-century philosophy of science. In M. Janssen, & C. Lehner (Eds.) , The Cambridge companion to Einstein (pp. 354–376). Cambridge: Cambridge University Press.

  • Ignatowski, VS. (1910). Einige allgemeine Bemerkungen zum Relativitätsprinzip. Physikalische Zeitschrift, 11, 972–976.

    Google Scholar 

  • Jammer, M. (1974). The philosophy of quantum mechanics. The interpretations of QM in historical perspective. New York: Wiley.

    Google Scholar 

  • Janssen, M. (2006). Einstein. The Old Sage and the Young Turk. Slides for a colloquium at the University of Wisconsin-Barron County, October 6, 2006. https://netfiles.umn.edu/users/janss011/home%20page/sage.pdf.

  • Janssen, M, & Renn, J. (2007). Untying the knot. How Einstein found his way back to field equations discarded in the Zurich Notebook. In J. Renn, & et al. (Eds.) , The Genesis of general relativity (4 vols., pp. 839–925). Dordrecht: Springer.

  • Job, A. (1912). Le Progrès des Théories Chimiques. Bulletin de la Société Française de Philosophie, 13, 47.

    Google Scholar 

  • Jordan, P. (1927a). Die Entwicklung der neuen Quantenmechanik. Die Naturwissenschaften, 30, 614–623.

    Google Scholar 

  • Jordan, P. (1927b). Die Entwicklung der neuen Quantenmechanik. II. Die Naturwissenschaften, 31, 636–649.

    Google Scholar 

  • Kaluza, T. (1921). Zum Unitätsproblem der Physik. Sitzungsberichte der Preußischen Akademie der Wissenschaften (966–972).

  • Klatzkin, J. (1931). Gespräch mit Einstein am 24. August 1931. EA, 86-581.

  • Klatzkin, J., Elbogen, I. (Eds.) (1928–1934). Encyclopaedia Judaica. Das Judentum in Geschichte und Gegenwart (10 vols.). Berlin: Eschkol Publikations Gesellschaft.

  • Klein, O. (1926). Quantentheorie und fünfdimensionale Relativitätstheorie. Zeitschrift für Physik, 37, 895–906.

    Google Scholar 

  • Kox, A.J. (2012). Hendrik Antoon Lorentz’s struggle with quantum theory. Archive for History of Exact Sciences, 67, 149–170.

    Google Scholar 

  • Koyré, A. (1931). Die Philosophie Émile Meyersons. Deutsch-Französische Rundschau, 4, 197–217.

    Google Scholar 

  • Koyré, A. (1961). Message. Bulletin de la Société Française de Philosophie 55: Commémoration du centenaire de deux épistémologues français. Émile Meyerson et Gaston Milhaud (pp. 115–116).

  • Kuhn, T. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.

    Google Scholar 

  • Lagrange, J-L. (1797). Théorie des fonctions analytiques. Paris: L’Imprimerie de la R-publique.

    Google Scholar 

  • LaLumia, J. (1966). The ways of reason. A critical study of the ideas of Émile Meyerson. London: Allen & Unwin.

    Google Scholar 

  • Lanczos, C. (1931). Die neue Feldtheorie Einsteins. Ergebnisse der exakten Naturwissenschaften, 10, 97–132.

    Google Scholar 

  • Lanczos, C. (1932). Stellung der Relativitätstheorie zu anderen physikalischen Theorien. Die Naturwissenschaften, 20, 113–116.

    Google Scholar 

  • Lanczos, C. (1938). The philosophical aspects of relativity. Two lectures deliverd on March 2 and March 4, 1937, in the course ‘Life views of great men of science’, Philosophy 143b, at Indiana University. Indianapolis: Planographed by John S. Swift Co., Inc.

  • Langevin, P. (1911). L’évolution de l’espace et du temps. Scientia, 10, 31–54.

    Google Scholar 

  • Langevin, P (Ed.). (1932). Le Magnétisme. Rapports et discussions du sixiéme Conseil de physique, tenu à Bruxelles du 20 au 25 octobre 1930. Paris: Gauthier-Villars.

  • Langevin, P, & et al. (1911). Le Temps, l’Espace et la Causalité dans la physique moderne. Intervenants: E. Borel, L. Brunschvicg, A. Darlu, E. Le Roy, G. Milhaud, J. Perrin, A. Rey. Bulletin de la Société Française de Philosophie, 305–348.

  • Lefevre, F. (1926). Une heure avec M. Émile Meyerson. Les Nouvelles Littéraires. Nov. 6, 1926.

  • Lehmkuhl, D. (2014). Why Einstein did not believe that general relativity geometrizes gravity? Studies in History and Philosophy of Science. Part B: Studies in History and Philosophy of Modern Physics, 46, 316–326.

    Google Scholar 

  • Lehner, C. (2014). Einstein’s realism and his critique of quantum mechanics. In M. Janssen, & C. Lehner (Eds.) , The Cambridge companion to Einstein (pp. 306–354). Cambridge: Cambridge University Press.

  • Lichtenstein, L. (1928). Die Philosophie von Émile Meyerson. Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig, 80, 275–285.

    Google Scholar 

  • Lichtenstein, L. (1930). Zur Einführung in die Philosophie von Émile Meyerson. Leipzig: Akademische Verlagsgesellschaft. Reprint from Meyerson, 1930a.

    Google Scholar 

  • Lorentz, H A (Ed.). (1928). Électrons et photons. Rapports et discussions du cinquiéme Conseil de physique tenu à Bruxelles du 24 au 29 octobre 1927 sous les auspices de l’Institut international de physique Solvay. Paris: Gauthier-Villars.

  • Manzoni, C. (1971). L’epistemologia di Émile Meyerson. Roma: Edizioni dell’Ateneo.

    Google Scholar 

  • Marcucci, S. (1962). Émile Meyerson. Epistemologia e filosofia. Firenze: Le Monnier.

    Google Scholar 

  • Mayorek, Y. (1999). The philosopher as director-general Émile Meyerson and the Jewish colonization association in Palestine. Jerusalem: Jewish Historical and Genealogical Research. http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/12342.

    Google Scholar 

  • Metz, A. (1923). La relativité. Exposé sans formules des théories d’Einstein et réfutation des erreurs contenues dans les ouvrages les plus notoires. Paris: Chiron.

    Google Scholar 

  • Metz, A. (1927). Meyerson. Une nouvelle philosophie de la connaissance. Paris: Alcan.

    Google Scholar 

  • Metzger, H. (1929). La philosophie d’Emile Meyerson et l’histoire des sciences. Archeion, 11, xxxii–xliii.

    Google Scholar 

  • Meyerson, É. (1884). Jean Rey et la loi de la conservation de la matiére. La Revue Scientifique, 33, 299–303. Repr. in Meyerson 1936, 209–222.

    Google Scholar 

  • Meyerson, É. (1888). Théodore Turquet de Mayerne et la découverte de l’hydrogéne. La Revue Scientifique, 42, 665–670. Repr. in Meyerson 1936, 223–238.

    Google Scholar 

  • Meyerson, É. (1891). La coupellation chez les anciens Juifs. La Revue Scientifique, 47, 56–58. Repr. in Meyerson 1936, 239–245.

    Google Scholar 

  • Meyerson, É. (1908). Identité et réalité. Paris: Alcan.

    Google Scholar 

  • Meyerson, É. (1911). L’histoire du probléme de la connaissance de M. E. Cassirer. Revue de Métaphysique et de Morale, 19, 100–129.

    Google Scholar 

  • Meyerson, É. (1921). De l’explication dans les sciences (Vol. 2). Paris: Payot.

    Google Scholar 

  • Meyerson, É. (1924a). La science et la quantité. Journal de Psychologie Normale et Pathologique, 31, 321–348. Repr. in Meyerson, 1925, 1–41.

    Google Scholar 

  • Meyerson, É. (1924b). La tendance apriorique et l’expérience. Revue philosophique de la France et de l’étranger, 97, 161–179. Repr. in Meyerson, 1925, 267–298.

    Google Scholar 

  • Meyerson, É. (1924c). Le relativisme, théorie du réel. Revue de Métaphysique et de Morale, 31, 29–48. Repr. in Meyerson, 1925, 59–87.

    Google Scholar 

  • Meyerson, É. (1925). La déduction relativiste. Paris: Payot.

    Google Scholar 

  • Meyerson, É. (1926). Identité et réalité, 3rd edn. Paris: Alcan.

    Google Scholar 

  • Meyerson, É. (1927). Zwei Randbemerkungen zur Besprechung. EA, 91-240. Meyerson’s remarks concering Einstein, 1927a.

  • Meyerson, É. (1930a). Identität und Wirklichkeit. Trans. by Kurt Grelling. With an intro. by Léon Lichtenstein. Leipzig: Akademische Verlagsgesellschaft. The introduction was repr. as separatum as Lichtenstein 1930.

    Google Scholar 

  • Meyerson, É. (1930b). Identity and reality. Trans. by Kate Loewenberg. London/New York: Allen & Unwin/MacMillan.

    Google Scholar 

  • Meyerson, É. (1931). Du cheminement de la penseé (Vol. 3). Paris: Alcan.

    Google Scholar 

  • Meyerson, É. (1933). Réel et déterminisme dans la physique quantique. With a forew. by Louis de Broglie. Paris: Hermann.

    Google Scholar 

  • Meyerson, É. (1934a). De l’analyse des produits de la pensée. Revue philosophique de la France et de l’étranger, 118, 135–170. Repr. in Meyerson 1936, 106–151.

    Google Scholar 

  • Meyerson, É. (1934b). Philosophie de la nature et philosophie de l’intellect. Revue de Métaphysique et de Morale, 41, 147–181. Repr. in Meyerson 1936, 59–105.

    Google Scholar 

  • Meyerson, É. (1936). Essais. In L. Lévy-Bruhl (Ed.) With a forew. by Louis de Broglie. Paris: Vrin.

  • Meyerson, É. (1985). The relativistic deduction. Epistemological implications of the theory of relativity. Trans. by David A. Sipfle and Mary-Alice Sipfle. Dordrecht: Reidel.

    Google Scholar 

  • Meyerson, É. (1991). Explanation in the sciences. Trans. by Mary-Alice Sipfle and David A. Sipfle. With a forew. by I. Bernard Cohen. Dordrecht: Springer.

    Google Scholar 

  • Miller, PD. (1928). Einstein on verge of great discovery resents intrusion. New York Times. Nov. 4, 1928.

  • Mills, MA. (2014). Identity versus determinism. Émile Meyerson’s Neo-Kantian Interpretation of the Quantum Theory. Studies in History and Philosophy of Science. Part B: Studies in History and Philosophy of Modern Physics, 47, 33–49.

    Google Scholar 

  • Mills, MA. (2015). Explicating Meyerson. The critique of positivism and historical Épistémologie. HOPOS: The Journal of the International Society for the History of Philosophy of Science, 5, 318–347.

    Google Scholar 

  • Mourélos, G. (1962). L’épistémologie positive et la critique meyersonienne. Le dialogue de l’expérience et de la raison dans l’épistémologie française contemporaine. Paris: Presses Universitaires de France.

    Google Scholar 

  • Norton, J.D. (1995). Eliminative induction as a method of discovery. How Einstein discovered general relativity. In J. Leplin (Ed.) The creation of ideas in physics. Studies for a methodology of theory construction (pp. 29–69). Dordrecht: Kluwer.

  • Norton, JD. (2000). ‘Nature is the realisation of the simplest conceivable mathematical ideas’. Einstein and the canon of mathematical simplicity. Studies in History and Philosophy of Science. Part B: Studies in History and Philosophy of Modern Physics, 31, 135–170.

    Google Scholar 

  • Pais, A. (1982). Subtle is the Lord. The science and the life of Albert Einstein. New York: Oxford University Press.

    Google Scholar 

  • Pauli, W. (1921). Relativitätstheorie. In A. Sommerfeld (Ed.) Enzyklopädie der mathematischen Wissenschaften. Vol. 5: Physik, Part 2. Leipzig: Teubner, 1921, 539–775. Repr. as separatum in: Relativitätstheorie. Leipzig: Teubner.

  • Perrin, J. (1910). Le mouvement brownien. Bulletin de la Société Française de Philosophie, 265–281.

  • Perrin, J, & et al. (1910). Le mouvement brownien. Discussion de la thése de M. Perrin. Présents à la séance: MM. Brunschvicg, Couturat, Delbos, Drouin, Halévy, Job, H. Lachelier, Lalange, X. Léon, Meyerson, Milhaud, Pacaut, Perrin, Simiand, Sorel. Intervenants: MM. Job, Meyerson, Couturat, Milhaud, Brunschvicg, Lalande. Bulletin de la Société Française de Philosophie, 283–302.

  • Petzoldt, J. (1914). Die Relativitätstheorie der Physik. Zeitschrift für positivistische philosophie, 2, 1–56.

    Google Scholar 

  • Petzoldt, J. (1921). Die Stellung der Relativitätstheorie in der geistigen Entwicklung der Menschheit, 1st edn. Dresden: Sibyllen-Verlag.

    Google Scholar 

  • Planck, M. (1931). Positivismus und reale Außenwelt. Vortrag, gehalten am 12. November 1930 im Harnack-Haus der Kaiser Wilhelm-Gesellschaft zur Förderung der Wissenschaften. Leipzig: Akademische Verlagsgesellschaft.

    Google Scholar 

  • Reichenbach, H. (1924). Axiomatik der relativistischen Raum-Zeit-Lehre. Vieweg: Braunschweig. Repr. in Reichenbach 1977, Vol. 3, 3–171.

  • Reichenbach, H. (1928). Philosophie der Raum-Zeit-Lehre. Berlin/Leipzig: Walter de Gruyter, 1928. Repr. in Reichenbach 1977, Vol. 2.

  • Reichenbach, H. (1969). Axiomatization of the theory of relativity. Ed. and trans. by Maria Reichenbach. With a forew. by Wesley C. Salmon. Berkeley: University of California Press.

    Google Scholar 

  • Reichenbach, H. (1977). Gesammelte Werke in 9 Bänden. Ed. by Andreas Kamlah and Maria Reichenbach. Braunschweig/Wiesbaden: Vieweg.

  • Renn, J. (1997). Einstein’s controversy with drude and the origin of statistical mechanics. A new glimpse from the ‘love letters’. Archive for History of Exact Sciences, 51, 315–354. Repr. in: Einstein. The Formative Years 1879–1909, ed. by Don Howard and John Stachel. Boston: Birkhäuser, Nov. 28, 2016, 107–157.

    Google Scholar 

  • Renn, J. (2005). Einstein’s invention of Brownian motion. Annalen der Physik, 14(Supplement, 23–37), 23–37.

    Google Scholar 

  • Ryckman, T. (2005). The reign of relativity. Philosophy in Physics 1915–1925. Oxford/New York: Oxford University Press.

    Google Scholar 

  • Ryckman, T. (2014). ‘A believing rationalist’ Einstein and ‘The truly valuable’ in Kant. In M. Janssen, & C. Lehner (Eds.) , The Cambridge companion to Einstein (pp. 377–397). Cambridge: Cambridge University Press.

  • Ryckman, T. (2017). Einstein. New York: Routledge.

    Google Scholar 

  • Sauer, T. (2006). Field equations in teleparallel space-time. Einstein’s Fernparallelismus approach toward unified field theory. Historia Mathematica, 33, 399–439.

    Google Scholar 

  • Sauer, T. (2014). Einstein’s unified field theory program. In M. Janssen, & C. Lehner (Eds.) , The Cambridge companion to Einstein (pp. 281–305). Cambridge: Cambridge University Press.

  • Sauer, T, & Trautman, A. (2008). Myron Mathisson. What little we know of his life. Acta Physica Polonica, 1, 7–26.

    Google Scholar 

  • Schlick, M. (1931). Die Kausalität in der gegenwärtigen Physik. Die Naturwissenschaften, 19, 145–162.

    Google Scholar 

  • Schlick, M. (1932a). Causality in everyday life and in recent science. University of California Publications in Philosophy, 15, 99–125.

    Google Scholar 

  • Schlick, M. (1932b). Positivismus und Realismus. Erkenntnis, 3, 1–31.

    Google Scholar 

  • Schouten, JA. (1924). On a non-symmetrical affine field theory. Verhandelingen de Koninklijke Akademie van Wetenschappen te Amsterdam, 26, 850–857.

    Google Scholar 

  • Schrödinger, E. (1926a). Quantisierung als Eigenwertproblem. Erste Mitteilung. Annalen der Physik, 4th ser. 78, 361–376.

    Google Scholar 

  • Schrödinger, E. (1926b). Quantisierung als Eigenwertproblem. Vierte Mitteilung. Annalen der Physik, 4th ser. 80, 109–139.

    Google Scholar 

  • Schrödinger, E. (1926c). Quantisierung als Eigenwertproblem. Störungstheorie, mit Anwendung auf den Starkeffekt der Balmerlinien. Dritte Mitteilung. Annalen der Physik, 4th ser. 80, 437–490.

    Google Scholar 

  • Schrödinger, E. (1926d). Quantisierung als Eigenwertproblem. Zweite Mitteilung. Annalen der Physik, 14th ser. 384, 489–527.

    Google Scholar 

  • Schrödinger, E. (1926e). Über das Verhältnis der Heisenberg-Born-Jordanschen Quantenmechanik zu der meinem. Annalen der Physik, 4th ser. 79, 734–756.

    Google Scholar 

  • Sée, HE. (1932). Science et philosophie d’aprés la doctrine de M. Émile Meyerson. Paris: Alcan.

    Google Scholar 

  • Seelig, C. (1960). Albert Einstein. Leben und Werk eines Genies unserer Zeit. Vienna: Europa Verlag.

    Google Scholar 

  • Sommerfeld, A. (1929). Einige grundsätzliche Bemerkungen zur Wellenmechanik. Physikalische Zeitschrift, 30, 866–871.

    Google Scholar 

  • Sommerfeld, A. (1930). Über die Elektronentheorie der Metalle und die Natur des Elektrons. Meyerson’s replies to (Einstein, 1928d). Monatshefte für Mathematik und Physik, 37, 183–198.

    Google Scholar 

  • Study, E. (1914). Die realistische Weltansicht und die Lehre von Raume. Geometrie, Anschauung und Erfahrung. Braunschweig: F. Vieweg & Sohn.

    Google Scholar 

  • Stumper, O. (1929). L’explication scientifique selon M. Émile Meyerson. La dissolution de l’être dans le néant par l’entendement pur et le rôle conservateur de l’irrationnel. Luxembourg: Belfort.

    Google Scholar 

  • Telkes-Klein, E. (2003). Émile Meyerson. A great forgotten figure. Iyyun. The Jerusalem Philosophical Quarterly, 52, 235–244.

    Google Scholar 

  • Telkes-Klein, E. (2004). Émile Meyerson, d’aprés sa correspondance. Revue de Synthése, 125, 197– 215.

    Google Scholar 

  • Telkes-Klein, E. (2010). La genése d’Identité et réalité [Meyerson, 1908] à travers une lettre d’Émile Meyerson à sa sœur. Revue d’histoire des Sciences, 63, 247.

    Google Scholar 

  • Thirring, H. (1928). Die Grundgedanken der neueren Quantentheorie. Erster Teil: Die Entwicklung bis 1926. Ergebnisse der exakten naturwissenschaften, 7, 384–431.

    Google Scholar 

  • van Dongen, J. (2004). Einstein’s methodology, semivectors and the unification of electrons and protons. Archive for History of Exact Sciences, 58, 219–254.

    Google Scholar 

  • van Dongen, J. (2010). Einstein’s unification. Cambridge: Cambridge University Press.

    Google Scholar 

  • Vizgin, VP. (1994). Unified field theories in the first third of the 20th Century. Trans. by Julian B. Barbour. Boston, Basel/Stuttgart: Birkhäuser.

    Google Scholar 

  • Wessels, L. (1980). What was Born’s statistical interpretation? PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 187–200.

  • Weyl, H. (1918). Gravitation und Elektrizität. Sitzungsberichte der Preußischen Akademie der Wissenschaften, 465–480. Repr. in Weyl 1968, Vol. 2, Doc. 31.

  • Weyl, H. (1919). Eine neue Erweiterung der Relativitätstheorie. Annalen der Physik, 4th ser. 59, 101–133. Repr. in Weyl 1968, Vol. 2, Doc. 34.

    Google Scholar 

  • Weyl, H. (1921a). Electricity and gravitation. Nature, 106, 800–802. Repr. in Weyl 1968, Vol. 2, Doc. 48.

    Google Scholar 

  • Weyl, H. (1921b). Feld und Materie. Annalen der Physik, 4th ser. 65, 541–563. Repr. in Weyl 1968 , Vol. 2, Doc. 47.

    Google Scholar 

  • Weyl, H. (1921c). Raum–Zeit–Materie. Vorlesungen über allgemeine Relativitätstheorie, 4th edn. Berlin: Springer.

    Google Scholar 

  • Weyl, H. (1921d). Über die physikalischen Grundlagen der erweiterten Relativitätstheorie. Physikalische Zeitschrift, 22, 473–480. Repr. in Weyl 1968, Vol. 2, Doc. 46.

    Google Scholar 

  • Weyl, H. (1929). Elektron und Gravitation. Zeitschrift für Physik, 56, 330–352. Repr. in Weyl, 1968, Vol. 3, Doc. 85.

    Google Scholar 

  • Weyl, H. (1968). In K. Chandrasekharan (Ed.), Gesammelte Abhandlungen (Vol. 4). Berlin: Springer.

  • Winternitz, J. (1923). Relativitätstheorie und Erkenntnislehre. Eine Untersuchung über die erkenntnistheoretischen Grundlagen der Einsteinschen Theorie und die Bedeutung ihrer Ergebnisse für die allgemeinen Probleme des Naturerkennens. Leipzig: Teubner.

    Google Scholar 

  • Zahar, E. (1980). Einstein, Meyerson and the role of mathematics in physical discovery. The British Journal for the Philosophy of Science, 31, 1–43.

    Google Scholar 

  • Zahar, E. (1987). Meyerson’s ‘relativistic deduction’. Einstein versus Hegel. The British Journal for the Philosophy of Science, 38, 93–106.

    Google Scholar 

  • Zahar, E. (1989). Einstein’s revolution. A study in heuristic. La Salle: Open Open Court.

    Google Scholar 

Download references

Acknowledgments

I started to work on this material while working as a contributing editor at the Einstein Paper Project at Caltech. I am deeply grateful to Diana Kormos-Buchwald for giving me this opportunity. The paper was completed while I was a senior fellow at the Sidney M. Edelstein Center in Jerusalem. I thank Orly Shenker, Tony Travis, and Aviv Shirtz for the kind hospitality and Yemima Ben Menahem for her insightful comments on an early draft of the paper. I extend my gratitude to Rochelle Rubinstein of the Central Zionist Archive in Jerusalem for granting me access to Meyerson’s papers in spite of being in need of cataloging. I am grateful to Frédéric Fruteau de Laclos for tips and reading suggestions about Meyerson. I have greatly benefited from Jeroen Van Dongen’s careful reading of the manuscript and his numerous suggestions for improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Giovanelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giovanelli, M. ‘Physics is a kind of metaphysics’: Émile Meyerson and Einstein’s late rationalistic realism. Euro Jnl Phil Sci 8, 783–829 (2018). https://doi.org/10.1007/s13194-018-0211-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13194-018-0211-y

Keywords

Navigation