Skip to main content
Log in

Estimating a multivariate normal mean with a bounded signal to noise ratio under scaled squared error loss

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

For normal models with \(X \sim N_p(\theta, \sigma^{2} I_{p}), \;\; S^{2} \sim \sigma^{2}\chi^{2}_{k}, \;\mbox{independent}\), we consider the problem of estimating θ under scale invariant squared error loss ||d − θ||2/σ 2, when it is known that the signal-to-noise ratio \({\left\|\theta\right\|}/{\sigma}\) is bounded above by m. Risk analysis is achieved by making use of a conditional risk decomposition and we obtain in particular sufficient conditions for an estimator to dominate either the unbiased estimator δ UB (X) = X, or the maximum likelihood estimator \(\delta_{ML}(X,S^2)\), or both of these benchmark procedures. The given developments bring into play the pivotal role of the boundary Bayes estimator δ BU,0 associated with a prior on (θ,σ 2) such that θ|σ 2 is uniformly distributed on the (boundary) sphere of radius m σ and a non-informative 1/σ 2 prior measure is placed marginally on σ 2. With a series of technical results related to δ BU,0; which relate to particular ratios of confluent hypergeometric functions; we show that, whenever \(m \leq \sqrt{p}\) and p ≥ 2, δ BU,0 dominates both δ UB and δ ML . The finding can be viewed as both a multivariate extension of p = 1 result due to Kubokawa (Sankhyā 67:499–525, 2005) and an unknown variance extension of a similar dominance finding due to Marchand and Perron (Ann Stat 29:1078–1093, 2001). Various other dominance results are obtained, illustrations are provided and commented upon. In particular, for \(m \leq \sqrt{p/2}\), a wide class of Bayes estimators, which include priors where θ|σ 2 is uniformly distributed on the ball of radius m σ centered at the origin, are shown to dominate δ UB .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M. and Stegun, I. (1964). Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover, New York.

    MATH  Google Scholar 

  • Eaton, M.L. (1989). Group invariance applications in statistics. Regional Conference Series in Probability and Statistics, vol. 1. Institute of Mathematical Statistics, Hayward, California.

  • Efromovich, S.Y. (1999). Nonparametric curve estimation: Methods, theory and applications. Springer, New York.

    MATH  Google Scholar 

  • Fourdrinier, D. and Marchand, É. (2010). On Bayes estimators with uniform priors on spheres and their comparative performance with maximum likelihood estimators for estimating bounded multivariate normal means. J. Multivariate Anal., 101, 1390–1399.

    Article  MathSciNet  MATH  Google Scholar 

  • Giri, N.C. (2004). Multivariate Statistical Analysis. Marcel Dekker, 2nd edition, revised and expanded.

  • Hartigan, J. (2004). Uniform priors on convex sets improve risk. Statist. Probab. Lett., 67, 285–288.

    Article  MathSciNet  MATH  Google Scholar 

  • Johnstone, I. (2011). Gaussian estimation: sequence and wavelet models, Unpublished manuscript.

  • Joshi, C.M. and Bissu, S.K. (1996). Inequalities for some special functions. J. Comput. Appl. Math., 69, 251–259.

    Article  MathSciNet  MATH  Google Scholar 

  • Kariya, T., Giri, N., and Perron, F. (1988). Invariant estimation of a mean vector μ of N(μ, Σ) with μ′ Σ − 1 μ = 1, Σ − 1/2 μ = C or Σ = δ 2 μμI. J. Multivariate Anal., 27, 270–283.

    Article  MathSciNet  MATH  Google Scholar 

  • Kokologiannaki, C.G. (2012). Bounds for functions involving ratios of Bessel functions. J. Math. Anal. Appl., 385, 737–742.

    Article  MathSciNet  MATH  Google Scholar 

  • Kortbi, O. and Marchand, É. (2012). Truncated linear estimation of a bounded multivariate normal mean, J. Statist. Plann. Inference, 142, 2607–2618.

    Article  MathSciNet  MATH  Google Scholar 

  • Kubokawa, T. (1994). A unified approach to improving on equivariant estimators. Ann. Statist., 22, 290–299.

    Article  MathSciNet  MATH  Google Scholar 

  • Kubokawa, T. (2005). Estimation of a mean of a normal distribution with a bounded coefficient of variation. Sankhyā: The Indian Journal of Statistics, 67, 499–525.

    MathSciNet  MATH  Google Scholar 

  • Lehmann, E.L. and Casella, G. (1998). Theory of Point Estimation. Springer-Verlag, 2nd edition.

  • Mandelkern, M. (2002). Setting confidence intervals for bounded parameters with discussion. Statist. Sci., 17, 149–172.

    Article  MathSciNet  MATH  Google Scholar 

  • Marchand, É., Jafari Jozani, M. and Tripathi, Y.M. (2012). On the inadmissibility of various estimators of normal quantiles and on applications to two-sample problems with additional information. Contemporary Developments in Bayesian analysis and Statistical Decision Theory: A Festschrift for William E. Strawderman, Institute of Mathematical Statistics Volume Series, 8, 104–116.

    Article  Google Scholar 

  • Marchand, É. and Perron, F. (2001). Improving on the mle of a bounded normal mean. Ann. Statist., 29, 1078–1093.

    Article  MathSciNet  MATH  Google Scholar 

  • Marchand, É. and Strawderman, W.E. (2004). Estimation in restricted parameter spaces: A review. Festschrift for Herman Rubin, IMS Lecture Notes-Monograph Series, 45, pp. 21–44.

    Article  MathSciNet  Google Scholar 

  • Marchand, É., and Strawderman, W.E. (2005). On improving on the minimum risk equivariant estimator of a location parameter which is constrained to an interval or a half-interval. Ann. Inst. Statist. Math., 57, 129–143.

    Article  MathSciNet  MATH  Google Scholar 

  • Marchand, É. and Strawderman, W.E. (2006). On the behaviour of Bayesian credible intervals for some restricted parameter space problems. Recent Developments in Nonparametric Inference and Probability: A Festschrift for Micheal Woodroofe, IMS Lecture Notes-Monograph Series, 50, pp. 112–126.

    Article  MathSciNet  Google Scholar 

  • Marchand, É., and Strawderman, W.E. (2012a). On Bayesian credible sets in restricted parameter space problems and lower bounds for frequentist coverage. (arXiv: 1208.002802)

  • Marchand, É., and Strawderman, W.E. (2012b). A unified minimax result for restricted parameter spaces. Bernoulli, 18, 635–643.

    Article  MathSciNet  MATH  Google Scholar 

  • Marchand, É., Strawderman, W.E., Bosa, K., and Lmoudden, A. (2008). On the frequentist coverage of Bayesian credible intervals for lower bounded means. Electron. J. Stat., 2, 1028–1042.

    Article  MathSciNet  MATH  Google Scholar 

  • Moors, J.J.A. (1985). Estimation in Truncated Parameter Spaces. Ph.D. thesis, Tilburg University.

  • Perron, F. and Giri, N.C. (1990). On the best equivariant estimator of mean of a multivariate normal population. J. Multivariate Anal., 32, 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  • Roe, B. and Woodroofe, M. (2000). Setting confidence belts. Phys. Rev. D, 63, 013009/01–09.

    Article  Google Scholar 

  • Watson, G.S. (1983). Statistics on spheres. John Wiley, New York.

    MATH  Google Scholar 

  • Zhang, T. and Woodroofe, M. (2003). Credible and confidence sets for restricted parameter spaces. J. Statist. Plann. Inference, 115, 479–490.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éric Marchand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kortbi, O., Marchand, É. Estimating a multivariate normal mean with a bounded signal to noise ratio under scaled squared error loss. Sankhya A 75, 277–299 (2013). https://doi.org/10.1007/s13171-013-0028-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-013-0028-x

Keywords and phrases

AMS (2000) subject classification

Navigation