Skip to main content
Log in

Nonlocal eigenvalue problems arising in a generalized phase-field-type system

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We deal with a generalized phase-field-type system that arises as a transformed system of reaction-diffusion equations with a conservation law. We consider the stationary problem which is reduced to a scalar elliptic equation with a nonlocal term, and study the linearized eigenvalue problem. We first prove by the spectral comparison argument that the number of unstable eigenvalues for the problem coincides with the one of the linearized eigenvalue problem for the original system. We next show a limiting behavior of eigenvalues for the scalar problem as the coefficient of the nonlocal term goes to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bates, P.W., Fife, P.C.: Spectral comparison principles for the Cahn-Hilliard and phase-field equations, and time scales for coarsening. Physica D 43, 335–348 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Caginalp, G.: An analysis of a phase field model of a free boundary. Arch. Ration. Mech. Anal. 92, 205–245 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  4. Courant, R., Hilbert, D.: Method of Mathematical Physics, vol. I. Wiley Interscience, New York (1953)

  5. Chen, C.-N., Jimbo, S., Morita, Y.: Spectral comparison and gradient-like property in the FitzHugh-Nagumo type equations. Nonlinearity 28, 1003–1016 (2015)

    Article  MATH  Google Scholar 

  6. Davies, E.B.: Spectral Theory and Differential Operators. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  7. Fife, P.C.: Models for phase separation and their mathematics. Electron. J. Diff. Equ. 2000(48), 1–26 (2000)

  8. Fix, G.J.: Phase filed methods for free boundary problems. In: Fasano, A., Primicero, M. (Eds) Free Boundary Problems: Theory and Applications. Pitman, London, pp 580–589 (1983)

  9. Gurtin, M.E., Matano, H.: On the structure of equilibrium phase transitions within the gradient theory of fluids. Q. Appl. Math. 156, 301–317 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, New York (1981)

    Book  MATH  Google Scholar 

  11. Jimbo, S., Morita, Y.: Lyapunov function and spectrum comparison for a reaction-diffusion system with mass conservation. J. Diff. Equ. 255, 1657–1683 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  13. Kosugi, S., Morita, Y., Yotsutani, S.: Stationary solutions to the one-dimensional Cahn-Hilliard equation: proof by the complete elliptic integrals. Discrete Contin. Dyn. Syst. 19, 609–629 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Latos, E., Morita,Y., Suzuki, T.: Stability and spectral comparison of a reaction-diffusion system with mass conservation (preprint)

  15. Latos, E., Suzuki, T.: Global dynamics of a reaction-diffusion system with mass conservation. J. Math. Anal. Appl. 411, 107–118 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Miyamoto, Y.: Stability of a boundary spike layer for the Gierer-Meinhardt system. Eur. J. Appl. Math. 16, 467–491 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miyamoto, Y.: An instability criterion for activator-inhibitor systems in a two-dimensional ball. J. Diff. Equ. 229, 494–508 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mizhohata, S.: The Theory of Partial Differential Equations. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  19. Morita, Y.: Spectrum comparison for a conserved reaction-diffusion system with a variational property. J. Appl. Anal. Comput. 2, 57–71 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Morita, Y., Ogawa, T.: Stability and bifurcation of nonconstant solutions to a reaction-diffusion system with conservation of mass. Nonlinearity 23, 1387–1411 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ni, W.M., Takagi, I., Yanagida, E.: Stability of least energy patterns of the shadow system for an activator? Inhibitor model. Jpn. J. Ind. Appl. Math. 18, 259–272 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nishiura, Y.: Coexistence of infinitely many stable solutions to reaction-diffusion systems in the singular limit. Dyn. Rep. 3, 25–103 (1994)

    Article  MATH  Google Scholar 

  23. Nishiura, Y.: Global structure of bifurcating solutions of some reaction-diffusion systems. SIAM J. Math. Anal. 13, 555–593 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nishiura, Y., Fujii, H.: Stability of singularly perturbed solutions to systems of reaction-diffusion equations. SIAM J. Math. Anal. 18, 1726–1770 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nishiura, Y., Mimura, M., Ikeda, H., Fujii, H.: Singular limit analysis of stability of traveling wave solutions in bistable reaction-diffusion systems. SIAM J. Math. Anal. 21, 85–122 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Novick-Cohen, A.: On the viscous Chan-Hilliard equation. In: Ball, J.M. (ed.) Matherial Instabilities in Continuum Mechanics and Related Mathematical Problems, pp. 329–342. Clarendon, Oxford (1988)

    Google Scholar 

  27. Otsuji, M., Ishihara, S., Co, C., Kaibuchi, K., Mochizuki, A., Kuroda, S.: A mass conserved reaction-diffusion system captures properties of cell polarity. PLoS Comput. Biol. 3, 1040–1054 (2007)

    Article  MathSciNet  Google Scholar 

  28. Ohnishi, I., Nishiura, Y.: Spectral comparison between the second and the fourth order equations of conservative type with non-local terms. Jpn. J. Ind. Appl. Math. 15, 253–262 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rothe, F.: Global Solutions of Reaction-Diffusion Systems. Lecture Notes in Mathematics, vol. 1072. Springer, Berlin (1984)

  30. Suzuki, T., Tasaki, S.: Stationary Fix-Caginalp equation with non-local term. Nonlinear Anal. 71, 1329–1349 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wei, J.: On single interior spike solutions of the Gierer-Meinhardt system: uniqueness and spectrum estimates. Eur. J. Appl. Math. 10, 353–378 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wei, J., Winter, M.: Mathematical Aspects of Pattern Formation in Biological Systems. Springer, London (2014)

    Book  MATH  Google Scholar 

  33. Wei, J., Zhang, L.: On a nonlocal eigenvalue problem. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 30, 41–61 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partially supported by JSPS KAKENHI Grant Number, 26287025. The first author was also partially supported by JSPS KAKENHI Grant Number 25400153 and the second author was by JSPS KAKENHI Grant Number, 26247013, and JST, CREST. The main part of this research was complete when the second author was visiting EPFL. He takes an opportunity to express their warm hospitality during his visit and special thanks to Professor Hoai-Minh Nguyen. The authors also would like to thank the referees for their valuable comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihisa Morita.

Additional information

Dedicated to the 75th birthday of Professor Masayasu Mimura.

Appendix

Appendix

1.1 Proof of Lemma 4

We put \(X^1:=H^1(\varOmega )\). \(\Vert \cdot \Vert _{X^1}\) and \((\cdot ,\cdot )_{X^1}\) stand for the norm and the inner product in \(H^1\) respectively. In order to make clarity, we also use the notation \(\Vert \cdot \Vert _{L^2}\) for the \(L^2\) norm throughout the section. Recall

$$\begin{aligned} \phi _j\in L^2(\varOmega ), \quad (\phi _i,\phi _j)_{L^2}=\delta _{ij}~\quad (1\le i,~ j\le N), \end{aligned}$$

and V in (45)

$$\begin{aligned} V=\{\varphi \in L^2(\varOmega ) : (\varphi ,\phi _j)_{L^2}=0~~(1\le j\le N)\}. \end{aligned}$$

First step: We define linear functionals on \(X^1\) as

$$\begin{aligned} T_j(u):=(u,\phi _j)_{L^2}\quad (u\in X^1),\qquad 1\le j\le N. \end{aligned}$$

Then \(T_j\in (X^1)'\) (the dual space of \(X^1\)). By the Riesz representation theorem there is a unique \(v_j\in X^1\) such that

$$\begin{aligned} T_j(u)=(u,v_j)_{X^1}\qquad (u\in X^1). \end{aligned}$$

We show

  1. (i)

    \(\Vert v_j\Vert _{L^2}>0, \quad v_j\notin V~(1\le j\le N)\).

  2. (ii)

    \(\{v_1, v_2,\ldots , v_N\}\) is linearly independent.

For \(\phi _j\) there is a sequence \(\{u_m^{(j)}\}_{m=1,2,\ldots }\subset X^1\) such that

$$\begin{aligned} \Vert u_m^{(j)}-\phi _j\Vert _{L^2}\rightarrow 0\quad (m\rightarrow \infty ), \end{aligned}$$

since \(H^1(\varOmega )\) is dense in \(L^2(\varOmega )\). We may assume \(1/2\le \Vert u_m^{(j)}\Vert _{L^2} \le 2\) because of \(\Vert \phi _j\Vert _{L^2}=1\). On the other hand for each j

$$\begin{aligned} \lim _{m\rightarrow \infty }T_j(u_m^{(j)})=\lim _{m\rightarrow \infty }(u_m^{(j)},\phi _j)_{L^2}=1. \end{aligned}$$

This yields

$$\begin{aligned} \Vert T_j\Vert _{(X^1)'}:=\sup _{u\in X^1}\frac{|T_j(u)|}{\Vert u\Vert _{X^1}} \ge \frac{|T_j(u_m^{(j)})|}{\Vert u_m^{(j)}\Vert _{X^1}}>0, \end{aligned}$$

for some m. The Riesz representation theorem tells

$$\begin{aligned} \Vert v_j\Vert _{X^1}=\Vert T_j\Vert _{(X^1)'}>0\qquad (1\le j\le N), \end{aligned}$$

hence

$$\begin{aligned} T_j(v_j)=(v_j,\phi _j)_{L^2}=(v_j, v_j)_{X^1}>0. \end{aligned}$$

This implies \(v_j\notin V~(1\le j\le N)\) and (i) is concluded.

Next we set

$$\begin{aligned} \sum _{j=1}^N{c_jv_j}=0,\qquad c_j\in \mathbb {C}~(1\le j\le N). \end{aligned}$$

Arbitrarily given \(u\in X^1\), we have

$$\begin{aligned} 0=\left( u, \sum _{j=1}^N c_jv_j\right) _{X^1} =\sum _{j=1}^N\overline{c_j}(u, v_j)_{X^1} = \sum _{j=1}^N\overline{c_j}(u, \phi _j)_{L^2}. \end{aligned}$$
(55)

We use the sequence \(\{u_m^{(i)}\}\) in the proof of (i). Putting \(u=u_m^{(i)}\) in (55) and taking \(m\rightarrow \infty \) yields

$$\begin{aligned} 0=\sum _{j=1}^N\overline{c_j}(\phi _i, \phi _j)_{L^2}=\overline{c_i}. \end{aligned}$$

Hence \(c_j=0~(1\le j\le N)\) by which we obtain the desired assertion (ii).

Second step: Put \(Y_1:=X^1\cap V\) and

$$\begin{aligned} Y_2:=L.H.[v_1, v_2, \ldots , v_N]. \end{aligned}$$

Then \(\mathrm{dim}Y_2=N\). Apply the Gram-Schmidt orthonormalization to the family \(\{v_j\}_{j=1,\ldots ,N}\). Then we obtain a family \(\{\hat{v}_j\}_{j=1,\ldots ,N}\) such that

$$\begin{aligned} (\hat{v}_i, \hat{v}_j)_{X^1}=\delta _{i,j}, \quad L.H.[\hat{v}_1, \hat{v}_2,\ldots , \hat{v}_N]=Y_2. \end{aligned}$$

We have a transformation from \((v_1, \ldots , v_n)\) into \((\hat{v}_1,\ldots , \hat{v}_N)\), indeed there is a regular matrix P such that P is triangular and

$$\begin{aligned} (\hat{v}_1,\ldots ,\hat{v}_N)=(v_1,\ldots , v_N)P. \end{aligned}$$

By this P we define

$$\begin{aligned} (\hat{\phi }_1, \ldots , \hat{\phi }_N):=(\phi _1,\ldots ,\phi _N)P. \end{aligned}$$

It is clear that \(\hat{\phi }_j\in L^2(\varOmega )\) and \(\{\hat{\phi }_1,\ldots ,\hat{\phi }_N\}\) is linearly independent. By the relations

$$\begin{aligned} (u,v_j)_{X^1}=(u,\phi _j)_{L^2}\quad (1\le j\le N), \end{aligned}$$

we have

$$\begin{aligned} (u, \hat{v}_j)_{X^1}=(u,\hat{\phi }_j)_{L^2}\qquad (\forall u\in H^1(\varOmega )), \quad 1\le j\le N. \end{aligned}$$

For \(u\in X^1\), we set

$$\begin{aligned}&u=u'+u'',\\&u':=u-\sum _{j=1}^N(u, \hat{v}_j)_{X^1}\hat{v}_j,\quad u'':=\sum _{j=1}^N(u, \hat{v}_j)_{X^1}\hat{v}_j. \end{aligned}$$

Clearly \(u''\in Y_2\). We prove \(u'\in V\).

$$\begin{aligned}&(u',\hat{\phi }_j)_{L^2}=\left( u-\sum _{k=1}^N(u,\hat{v}_k)_{X^1}\hat{v}_k, \hat{\phi }_j\right) _{L^2} \\&=(u,\hat{\phi }_j)_{L^2}-\sum _{k=1}^N(u,\hat{v}_k)_{X^1}(\hat{v}_k, \hat{\phi }_j)_{L^2} \\&=(u,\hat{v}_j)_{X^1}-\sum _{k=1}^N(u,\hat{v}_k)_{X^1}(\hat{v}_k, \hat{v}_j)_{X^1}=0. \end{aligned}$$

In the sequel we obtain \(u'\in Y_1=X^1\cap V\) and \(u=u'+u''\in Y_1\oplus Y_2~(Y_1\bot Y_2)\).

Third step: We can replace the basis \(\{v_j\}_{j=1,\ldots ,N}\) of \(Y_2\) by \(\{w_j\}_{j=1,\ldots ,N}\) so that

$$\begin{aligned} (w_i, \phi _j)_{L^2}=\delta _{i,j}\quad (1\le i, j\le N) \end{aligned}$$

holds. Indeed define the matricies,

$$\begin{aligned} J:=((v_i, v_j)_{X^1})_{1\le i, j\le N},\qquad A:=(a_{ij})_{1\le i,j\le N}:=J^{-1}. \end{aligned}$$

Then

$$\begin{aligned} w_j=\sum _{\ell }^N a_{\ell j}v_{\ell } (1\le j\le N) \end{aligned}$$

create the desired basis, since

$$\begin{aligned} (w_i,\phi _j)_{L^2}=(w_i, v_j)_{X^1}=\sum _{\ell =1}^N a_{\ell i}(v_\ell , v_j)_{X^1}=\delta _{ij}. \end{aligned}$$

We then complete the proof of Lemma 4. \(\square \)

1.2 Proof of Theorem 3 (II)

Given sequence \(\{\tau (m)\}_{m=1,2,\ldots },~\tau (m)\rightarrow \infty ~(m\rightarrow \infty )\), there is a subsequence \(\{\tau (m_p)\}_{p=1,2,\ldots }\) and a orthonormal family of functions \(\{\varPhi _k\}_{k=1,2,\ldots }\) such that

$$\begin{aligned}&\lim _{p\rightarrow \infty }\varPhi _k(\cdot ; \tau (m_p))=\varPhi _k(\cdot )~~\mathrm{strongly} ~\mathrm{in}~~L^2(\varOmega ), \\&\lim _{p\rightarrow \infty }\varPhi _k(\cdot ; \tau (m_p))=\varPhi _k(\cdot )~~\mathrm{weakly}~\mathrm{in}~~H^1(\varOmega ). \end{aligned}$$

Then

$$\begin{aligned} P(-d\varDelta \varPhi _k - a_\infty (\cdot )\varPhi _k)=\lambda _k\varPhi _k, \end{aligned}$$

namely,

$$\begin{aligned} d\varDelta \varPhi _k + a_\infty (x)\varPhi _k+\lambda _k\varPhi _k =\sum _{j=1}^N\frac{(d\varDelta \varPhi _k + a_\infty (\cdot )\varPhi _k, \phi _j)_{L^2}}{\Vert \phi _j\Vert _{L^2}^2}\, \phi _j. \end{aligned}$$
(56)

We construct approximate eigenfunction. Define

$$\begin{aligned} \tilde{\varPhi }_k(x;\tau ):= & {} \varPhi _k(x)+\frac{1}{\tau }\sum _{j=1}^N\frac{(\varvec{A}\varPhi _k,\phi _j)_{L^2}}{\Vert \phi _j\Vert _{L^2}^4}\, v_j(x), \\ \varvec{A}:= & {} d\varDelta + a_\infty (\cdot ), \end{aligned}$$

where \(v_j\in H^1(\varOmega )~(1\le j\le N)\) and

$$\begin{aligned} (v_i,\phi _j)_{L^2}=\delta _{ij}\Vert \phi _i\Vert _{L^2}^2\quad (1\le i,j \le N). \end{aligned}$$
(57)

For simplicity of notation we write \(\varPhi _{k,\tau }=\varPhi _k(\cdot ;\tau )\) and \(\tilde{\varPhi }_{k,\tau }=\tilde{\varPhi }_k(\cdot ;\tau )\).

Multiply by \(\tilde{\varPhi }_{k,\tau }\) the equation

$$\begin{aligned} -d\varDelta \varPhi _{k,\tau } - a(\cdot ;\tau )\varPhi _{k,\tau }+\tau \sum _{j=1}^N(\varPhi _{k,\tau }, \phi _j)_{L^2}\, \phi _j-\mu _k(\tau )\varPhi _{k,\tau }=0~~(x\in \varOmega ), \end{aligned}$$

and integrate it over \(\varOmega \) and we obtain

$$\begin{aligned}&((-d\varDelta - a(\cdot ;\tau ))\varPhi _{k,\tau },\varPhi _k)_{L^2} +\tau \sum _{j=1}^N(\varPhi _{k,\tau }, \phi _j)_{L^2}(\phi _j, \varPhi _k)_{L^2} -\mu _k(\tau )(\varPhi _{k,\tau }, \varPhi _k)_{L^2}\\&\quad +\frac{1}{\tau }\sum _{j=1}^N\frac{(\varvec{A}\varPhi _k,\phi _j)_{L^2}}{\Vert \phi _j\Vert _{L^2}^4} \left\{ ((-d\varDelta - a(\cdot ;\tau ))\varPhi _{k,\tau }, v_j)_{L^2} +\tau \sum _{\ell =1}^N(\varPhi _{k,\tau },\phi _\ell )_{L^2}(\phi _\ell ,v_j)_{L^2}\right\} \\&\quad -\frac{1}{\tau }\sum _{j=1}^N\frac{(\varvec{A}\varPhi _k,\phi _j)_{L^2}}{\Vert \phi _j\Vert _{L^2}^4}\, \mu _k(\tau )(\varPhi _{k,\tau },v_j)_{L^2}=0. \end{aligned}$$

Utilizing (57), \((\varPhi _k,\phi _j)_{L^2}=0\) and taking integration by part, the above equations turns to be

$$\begin{aligned}&(\varPhi _{k,\tau }, (-d\varDelta - a(\cdot ;\tau ))\varPhi _k)_{L^2} -\mu _k(\tau )(\varPhi _{k,\tau }, \varPhi _k)_{L^2}\\&\quad +\frac{1}{\tau }\sum _{j=1}^N\frac{(\varvec{A}\varPhi _k,\phi _j)_{L^2}}{\Vert \phi _j\Vert _{L^2}^4} \Big \{(d\nabla \varPhi _{k,\tau }, \nabla v_j)_{L^2} - (a(\cdot ;\tau )\varPhi _{k,\tau }, v_j)_{L^2} +\tau (\varPhi _{k,\tau },\phi _j)_{L^2}\Vert \phi _j\Vert _{L^2}^2 \Big \}\\&\quad -\frac{1}{\tau }\sum _{j=1}^N\frac{(\varvec{A}\varPhi _k,\phi _j)_{L^2}}{\Vert \phi _j\Vert _{L^2}^4}\, \mu _k(\tau )(\varPhi _{k,\tau },v_j)_{L^2}=0. \end{aligned}$$

Applying (56) to the above equality leads to

$$\begin{aligned}&\tau (\lambda _k-\mu _k(\tau ))(\varPhi _{k,\tau },\varPhi _k)_{L^2} - (\varPhi _{k,\tau }, (a(\cdot ;\tau )-a_\infty (\cdot ))\varPhi _k)_{L^2} \\&\quad +\sum _{j=1}^N\frac{(\varvec{A}\varPhi _k,\phi _j)_{L^2}}{\Vert \phi _j\Vert _{L^2}^4} \Big \{(d\nabla \varPhi _{k,\tau },\nabla v_j)_{L^2}- (a(\cdot ;\tau )\varPhi _{k,\tau },v_j)_{L^2}\Big \}\\&\quad -\sum _{j=1}^N\frac{(\varvec{A}\varPhi _k,\phi _j)_{L^2}}{\Vert \phi _j\Vert _{L^2}^4}\, \mu _k(\tau )(\varPhi _{k,\tau },v_j)_{L^2}=0. \end{aligned}$$

Putting \(\tau =\tau (m_p)\) and taking \(p\rightarrow \infty \), we have

$$\begin{aligned}&\lim _{p\rightarrow \infty }(\varPhi _{k,\tau (m_p)}, \varPhi _k)_{L^2}=\Vert \varPhi _k\Vert _{L^2}^2=1,\\&\quad \lim _{p\rightarrow \infty }\mu _k(\tau (m_p))(\varPhi _{k,\tau (m_p)}, v_j)=\lambda _k(\varPhi _k,v_j),\\&\quad \lim _{p\rightarrow \infty }\Big \{(d\nabla \varPhi _{k,\tau (m_p)}, \nabla v_j)_{L^2} - (a(\cdot ;\tau )\varPhi _{k,\tau (m_p)}, v_j)_{L^2}\Big \} \\&\qquad =(d\nabla \varPhi _k,\nabla v_j)_{L^2} - (a_\infty (\cdot )\varPhi _k, v_j)_{L^2}. \end{aligned}$$

With the aid of these facts we obtain

$$\begin{aligned}&\lim _{p\rightarrow \infty }\tau (m_p)(\mu _k(\tau (m_p))-\lambda _k)\\&\quad =\sum _{j=1}^N\frac{(\varvec{A}\varPhi _k, \phi _j)_{L^2}}{\Vert \phi _j\Vert _{L^2}^4}\Big \{(d\nabla \varPhi _k,\nabla v_j)_{L^2} - (a_\infty (\cdot )\varPhi _k, v_j) -\lambda _k(\varPhi _k,v_j)_{L^2}\Big \} \\&\quad =-\sum _{j=1}^N\frac{(\varvec{A}\varPhi _k, \phi _j)_{L^2}}{\Vert \phi _j \Vert _{L^2}^4}((d\varDelta + a_\infty (\cdot )+\lambda _k)\varPhi _k, v_j)_{L^2} \\&\quad =-\sum _{j=1}^N\frac{(\varvec{A}\varPhi _k, \phi _j)_{L^2}}{\Vert \phi _j\Vert _{L^2}^4}\left( \sum _{\ell =1}^N\frac{(\varvec{A}\varPhi _k, \phi _\ell )_{L^2}}{\Vert \phi _\ell \Vert _{L^2}^2}\phi _\ell , v_j\right) _{L^2} \quad (\text{ by } (56))\\&\quad =-\sum _{j=1}^N\frac{(\varvec{A}\varPhi _k, \phi _j)_{L^2}^2}{\Vert \phi _j\Vert _{L^2}^4} =-\sum _{j=1}^N\frac{(\varvec{A}\varPsi _k, \phi _j)_{L^2}^2}{\Vert \phi _j\Vert _{L^2}^4}, \end{aligned}$$

where in the last equality we used \((\phi _\ell , v_j)_{L^2}=\delta _{\ell ,j} \Vert \phi _j\Vert _{L^2}^2\) and the fact that \(\varPhi _k\) and \(\varPsi _k\) are linearly dependent because of the simplicity of \(\lambda _k\). Since \(\{\tau (m)\}_{m=1,2,\ldots }\) is arbitrary, we can get the assertion of Theorem 3 (II). \(\square \)

1.3 On the convergence of solutions as \(\delta \rightarrow +0\)

In general the following proposition holds:

Proposition 3

Assume that \(\partial \varOmega \) is of class \(C^2\) and that \(f\in C^1(\mathbb {R})\) satisfies

$$\begin{aligned} \xi \,f(\xi )\leqq -c_1\xi ^2+c_2\quad (\xi \in \mathbb {R}), \end{aligned}$$

where \(c_1>0\) and \(c_2>0\) are constants. Then for solutions \(\{u_\delta \}_{\delta >0}\) of (11) and an arbitrary sequence \(\{\delta _p\}_{p=1}^\infty \) with \(\lim _{p\rightarrow \infty } \delta _p=0\), there exist a subsequence \(\{\zeta _p\}_{p=1}^\infty \) \(\subset \{\delta _p\}_{p=1}^\infty \) and a solution \(u_0\) of (15) such that

$$\begin{aligned} \lim _{p\rightarrow \infty }\Vert u_{\zeta _p}-u_0\Vert _{C^1(\overline{\varOmega })}=0. \end{aligned}$$

It is easy to see that \(f(u)=u-u^3\) satisfies the condition in the proposition. When \(f(u)=u-u^3\) and the domain \(\varOmega \) is a one-dimensional interval, say (0, 1), minimizers of (12) must be monotone [9, 30]. We can easily check that given \(m\in (0, 1/\sqrt{3})\), there are \(\delta _m\) and \(d_m\) such that for \(\delta <\delta _m\) a unique constant solution \(u_c\) of (11) satisfies \(f'(u_c)=1-3u_c^2>0\) and it is unstable for \(d<d_m\). This implies the minimizers \(u^*_\delta \) are strictly decreasing/increasing. On the other hand, the equation (15) has a unique strictly decreasing/increasing solution \(u_0^*\) under the same condition for m and d [13]. Combining these facts and (16), we can assert that \(\lim _{\delta \rightarrow +0}\Vert u^*_\delta -u^*_0\Vert _{L^\infty }=0\). Once we obtained the convergence for the strictly monotone solutions, by reflection and appropriate scaling, we obtain the convergence for multi-mode solutions. In order to establish the convergence for the general f enjoying the condition of Proposition 3 or higher-dimensional domains we need a further investigation, which will be a future work. In the rest of this subsection we give a sketch of the proof of Proposition 3.

Sketch of Proof

Putting \(v=u-m\) and \(g(\xi )=f(\xi +m)\), we rewrite (11) as

$$\begin{aligned} \varDelta v+g(v)-\frac{1}{\delta }\langle v\rangle =0\quad \text {in}\quad \varOmega , \quad \frac{\partial v}{\partial \nu }=0\quad \text {on}\quad \partial \varOmega . \end{aligned}$$
(58)

Then \(v_\delta =u_\delta -m\) is a solution of this equation. We show that \(\{v_{\delta }\}_{\delta >0}\) is relatively compact in \(C^1(\overline{\varOmega })\).

Drop the subscript \(\delta \) of \(v_\delta \) for a while. We first obtain by (58)

$$\begin{aligned} \int _\varOmega g(v) dx-\frac{1}{\delta } \vert \varOmega \vert \langle v\rangle =0, \end{aligned}$$
(59)

and

$$\begin{aligned} \int _\varOmega \vert \nabla v\vert ^2 dx+\int _\varOmega (-v g(v)) dx +\frac{1}{\delta } \vert \varOmega \vert \langle v\rangle ^2=0. \end{aligned}$$
(60)

Then we can verify that

$$\begin{aligned} -\xi \, g(\xi )>0\quad \text {for}\quad \vert \xi \vert \geqq L \end{aligned}$$

holds for a positive number L thanks to the assumption on f. From (60)

$$\begin{aligned} \int _\varOmega \vert \nabla v\vert ^2 dx+\int _{\vert v\vert \geqq L} (-v g(v)) dx +\frac{1}{\delta } \vert \varOmega \vert \langle v\rangle ^2=\int _{\vert v\vert < L} (v g(v)) dx \end{aligned}$$
(61)

follows, where we simply write \(\{x\in \varOmega :\vert v(x)\vert \geqq L\}\) by \(|v|\geqq L\) and so on. Since the right hand side (61) is bounded, there is a positve M such that

$$\begin{aligned} 0\leqq \int _\varOmega \vert \nabla v\vert ^2 dx\leqq M,\quad 0\leqq \int _{\vert v\vert \geqq L} (-v g(v)) dx \leqq M,\quad 0\leqq \frac{1}{\delta } \vert \varOmega \vert \langle v\rangle ^2\leqq M. \end{aligned}$$
(62)

We estimate \(|\langle v\rangle |/\delta \). By (59)

$$\begin{aligned} \frac{1}{\delta } \vert \varOmega \vert \,\, \vert \langle v\rangle \vert= & {} \vert \int _\varOmega g(v) dx\vert \leqq \int _{v \geqq L} (-g(v)) dx+ \int _{ v \leqq -L} g(v) dx+ \int _{\vert v\vert \le L} \vert g(v)\vert dx\\\leqq & {} \frac{1}{L} \int _{\vert v\vert \geqq L} (-v\,g(v)) dx+ \int _{\vert v\vert<L} \vert g(v)\vert dx\leqq \frac{M}{L}+ \vert \varOmega \vert \sup _{\vert \eta \vert <L} \vert g(\eta )\vert , \end{aligned}$$

where we used (62). Therefore there is a constant \(K>0\) such as \((1/\delta ) \vert \langle v\rangle \vert \le K\).

We next verify that there is a number \(R>0\) such that

$$\begin{aligned} -R\le \inf _{x\in \varOmega }v_\delta (x)\le \sup _{x\in \varOmega } v_\delta (x)\le R, \end{aligned}$$
(63)

by applying to (58) the fact

$$\begin{aligned} g(\xi )<-K \quad (\xi \geqq R), \qquad g(\xi )\geqq K\quad (\xi \leqq -R), \end{aligned}$$

for a number R and \((1/\delta ) \vert \langle v_\delta \rangle \vert \le K\). Namely, the supremum and the infimum of \(v_\delta \) cannot takes in the range \(|v|>R\).

Finally, applying the Schauder estimate to (58) with the above estimate, we obtain that \(\{v_\delta \}_{\delta >0}\) is bounded in \(C^{1,\kappa }(\overline{\varOmega })\) for \(0<\kappa <1\) and consequently, it is compact in \(C^1(\overline{\varOmega })\). Hence, since \(u_\delta =v_\delta +m\), we have the assertion of Proposition 3 up to the convergence of the subsequence. In conclusion, the limit function, denoted by \(u_0\), satisfies (15). \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jimbo, S., Morita, Y. Nonlocal eigenvalue problems arising in a generalized phase-field-type system. Japan J. Indust. Appl. Math. 34, 555–584 (2017). https://doi.org/10.1007/s13160-017-0254-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-017-0254-z

Keywords

Mathematics Subject Classification

Navigation