Skip to main content
Log in

Asymptotic analysis of the conventional and invariant schemes for the method of fundamental solutions applied to potential problems in doubly-connected regions

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

The aim of this paper is to develop mathematical theory of the conventional and invariant schemes for the method of fundamental solutions used to solve potential problems in doubly-connected regions. Particularly, we prove that an approximate solution actually exists uniquely under some conditions, and that the error decays exponentially when the boundary data are analytic, and algebraically when they are not analytic but belong to some Sobolev spaces. Moreover, we present results of several numerical experiments in order to show the sharpness of our error estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ala, G., Fasshauer, G., Francomano, E., Ganci, S., Mccourt, M.: The method of fundamental solutions in solving coupled boundary value problems for M/EEG. SIAM J. Sci. Comput. 37(4), B570–B590 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amano, K., Okano, D., Ogata, H., Sugihara, M.: Numerical conformal mappings onto the linear slit domain. Jpn. J. Ind. Appl. Math. 29(2), 165–186 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N.: A spline-trigonometric Galerkin method and an exponentially convergent boundary integral method. Math. Comput. 41(164), 383–397 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, D.N., Wendland, W.L.: The convergence of spline collocation for strongly elliptic equations on curves. Numer. Math. 47(3), 317–341 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ashbee, T.L., Esler, J.G., McDonald, N.R.: Generalized Hamiltonian point vortex dynamics on arbitrary domains using the method of fundamental solutions. J. Comput. Phys. 246, 289–303 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, 2nd edn. Springer, New York (2001)

    Book  MATH  Google Scholar 

  7. Barnett, A.H., Betcke, T.: Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J. Comput. Phys. 227(14), 7003–7026 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bogomolny, A.: Fundamental solutions method for elliptic boundary value problems. SIAM J. Numer. Anal. 22(4), 644–669 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, C.S., Jiang, X., Chen, W., Yao, G.: Fast solution for solving the modified Helmholtz equation with the method of fundamental solutions. Commun. Comput. Phys. 17(3), 867–886 (2015)

    Article  MathSciNet  Google Scholar 

  10. Chen, W., Lin, J., Chen, C.S.: The method of fundamental solutions for solving exterior axisymmetric Helmholtz Problems with high wave-number. Adv. Appl. Math. Mech. 5(4), 477–493 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Comodi, M.I., Mathon, R.: A boundary approximation method for fourth order problems. Math. Models Meth. Appl. Sci. 1(4), 437–445 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9(1–2), 69–95 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gáspár, G.: A regularized multi-level technique for solving potential problems by the method of fundamental solutions. Eng. Anal. Bound. 57, 66–71 (2015)

    Article  MathSciNet  Google Scholar 

  14. Henrici, P.: Applied and Computational Complex Analysis, vol. 3. Wiley, New York (1986)

    MATH  Google Scholar 

  15. Johansson, B.T., Lesnic, D., Reeve, T.: The method of fundamental solutions for the two-dimensional inverse Stefan problem. Inverse Probl. Sci. Eng. 22(1), 112–129 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kangro, U.: Convergence of collocation method with delta functions for integral equations of first kind. Integr. Equ. Oper. Theory 66(2), 265–282 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Karageorghis, A.: Efficient MFS algorithms for inhomogeneous polyharmonic problems. J. Sci. Comput. 46(3), 519–541 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karageorghis, A., Lesnic, D., Marin, L.: A survey of applications of the MFS to inverse problems. Inverse Probl. Sci. Eng. 19(3), 309–336 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Katsurada, M.: A mathematical study of the charge simulation method II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36(1), 135–162 (1989)

    MathSciNet  MATH  Google Scholar 

  20. Karageorghis, A.: The method of fundamental solutions for elliptic problems in circular domains with mixed boundary conditions. Numer. Algor. 68, 185–211 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Katsurada, M.: Asymptotic error analysis of the charge simulation method in a Jordan region with an analytic boundary. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37(3), 635–657 (1990)

  22. Katsurada, M.: Charge simulation method using exterior mapping functions. Jpn. J. Ind. Appl. Math. 11(1), 47–61 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Katsurada, M.: A mathematical study of the charge simulation method by use of peripheral conformal mappings. Mem. Inst. Sci. Tech. Meiji Univ. 37(8), 195–212 (1998)

    Google Scholar 

  24. Katsurada, M., Okamoto, H.: A mathematical study of the charge simulation method I. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35(3), 507–518 (1988)

  25. Katsurada, M., Okamoto, H.: The collocation points of the fundamental solution method for the potential problem. Comput. Math. Appl. 31(1), 123–137 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kołodziej, J.A., Mierzwiczak, M.: Transient heat conduction by different version of the method of fundamental solutions—a comparison study. Comput. Assist. Mech. Eng. Sci. 17(1), 75–88 (2010)

    MathSciNet  Google Scholar 

  27. Kołodziej, J.A., Grabski, J.K.: Application of the method of fundamental solutions and the radial basis functions for viscous laminar flow in wavy channel. Eng. Anal. Bound. Elem. 57, 58–65 (2015)

    Article  MathSciNet  Google Scholar 

  28. Li, M., Chen, C.S., Karageorghis, A.: The MFS for the solution of harmonic boundary value problems with non-harmonic boundary conditions. Comput. Math. Appl. 66(11), 2400–2424 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, M., Chen, C.S., Chu, C.C., Young, D.L.: Transient 3D heat conduction in functionally graded materials by the method of fundamental solutions. Eng. Anal. Bound. Elem. 45, 62–67 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, W., Li, M., Chen, C.S., Lu, X.: Compactly supported radial basis functions for solving high order partial differential equations in 3D. Eng. Anal. Bound. Elem. 55, 2–9 (2015)

    Article  MathSciNet  Google Scholar 

  31. Li, Z.-C.: The method of fundamental solutions for annular shaped domains. J. Comput. Appl. Math. 228(1), 355–572 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, Z.-C., Lee, M.-G., Chiang, J.Y., Liu, Y.P.: The Trefftz method using fundamental solutions for biharmonic equations. J. Comput. Appl. Math. 235(15), 4350–4367 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, Z.-C., Mathon, R., Sermer, P.: Boundary methods for solving elliptic problems with singularities and interfaces. SIAM J. Numer. Anal. 24(3), 487–498 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lin, J., Chen, W., Chen, C.S.: A new scheme for the solution of reaction diffusion and wave propagation problems. Appl. Math. Model. 38(23), 5651–5664 (2014)

    Article  MathSciNet  Google Scholar 

  35. Murota, K.: On “invariance” of schemes in the fundamental solution method (Japanese). Inf. Process. Soc. Japan 34(3), 533–535 (1993)

    Google Scholar 

  36. Murota, K.: Comparison of conventional and “invariant” schemes of fundamental solutions method for annular domains. Jpn. J. Indust. Appl. Math. 12(1), 61–85 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nishida, K.: Mathematical and numerical analysis of charge simulation method in 2-dimensional elliptic domains. Trans. Jpn. Soc. Ind. Appl. Math. 5(3), 185–198 (1995)

    Google Scholar 

  38. Ogata, H., Chiba, F., Ushijima, T.: A new theoretical error estimate of the method of fundamental solutions applied to reduced wave problems in the exterior region of a disk. J. Comput. Appl. Math. 235(12), 3395–3412 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ogata, H., Katsurada, M.: Convergence of the invariant scheme of the method of fundamental solutions for two-dimensional potential problems in a Jordan region. Jpn. J. Indust. Appl. Math. 31(1), 231–262 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ohe, T., Ohnaka, K.: Uniqueness and convergence of numerical solution of the Cauchy problem for the Laplace equation by a charge simulation method. Jpn. J. Indust. Appl. Math. 21(3), 339–359 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Reeve, T., Johansson, B.T.: The method of fundamental solutions for a time-dependent two-dimensional Cauchy heat conduction problem. Eng. Anal. Bound. Elem. 37(3), 569–578 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sakajo, T., Amaya, Y.: Numerical construction of potential flows in multiply connected channel domains. Comput. Meth. Funct. Theory 11(2), 415–438 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sakakibara, K.: Analysis of the dipole simulation method in Jordan regions with analytic boundaries. BIT Numer. Math. 56(4), 1369–1400 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sun, Y.: Modified method of fundamental solutions for the Cauchy problem connected with the Laplace equation. Int. J. Comput. Math. 91(10), 2185–2198 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sun, Y., Ma, F., Zhou, X.: An invariant method of fundamental solutions for the Cauchy problem in two-dimensional isotropic linear elasticity. J. Sci. Comput. 64(1), 197–215 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wei, T., Zhou, Y.: Convergence analysis for the Cauchy problem of Laplace’s equation by a regularized method of fundamental solutions. Adv. Comput. Math. 33(4), 491–510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wen, J., Yamamoto, M., Wei, T.: Simultaneous determination of a time-dependent heat source and the initial temperature in an inverse heat conduction problem. Inverse Probl. Sci. Eng. 21(3), 485–499 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yan, L., Yang, F.: Efficient Kansa-type MFS algorithm for time-fractional inverse diffusion problems. Comput. Math. Appl. 67(8), 1507–1520 (2014)

    Article  MathSciNet  Google Scholar 

  49. Zhang, L., Li, Z.-C., Wei, Y., Chiang, J.Y.: Cauchy problems of Laplace’s equation by the methods of fundamental solutions and particular solutions. Eng. Anal. Bound. Elem. 37(4), 765–780 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their careful reading and constructive comments. This work was supported by the Program for Leading Graduate Schools, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koya Sakakibara.

Additional information

This work was supported by the Program for Leading Graduate Schools, MEXT, Japan.

Appendices

A Proof of Lemma 2

First, we bound the norm \(\Vert q - q^{(N)}\Vert _{\mathbb {Y}_{\epsilon , s}}^2\) as follows:

$$\begin{aligned} \Vert q - q^{(N)}\Vert _{\mathbb {Y}_{\epsilon , s}}^2&\le \sum _{\nu =1}^{2}[ T_1^{(\nu )} + (2\pi )^{s-1} ( T_2^{(\nu )} + 2T_3^{(\nu )} + 2T_4^{(\nu )} ) ], \end{aligned}$$

where

$$\begin{aligned} T_1^{(\nu )}&= |\hat{q}_\nu (0) - \hat{q}_\nu ^{(N)}(0)|^2, \\ T_2^{(\nu )}&= \sum _{n \in \varLambda _N' {\setminus } \{0\}} |\hat{q}_\nu (n) - \hat{q}_\nu ^{(N)}(n)|^2 (\epsilon \xi (\nu , \nu ))^{2|n|} |n|^{2(s-1)},\\ T_3^{(\nu )}&= \sum _{n \in \mathbb {Z}{\setminus } \varLambda _N'} |\hat{q}_\nu ^{(N)}(n)|^2 (\epsilon \xi (\nu , \nu ))^{2|n|} |n|^{2(s-1)},\\ T_4^{(\nu )}&= \sum _{n \in \mathbb {Z}{\setminus } \varLambda _N'} |\hat{q}_\nu (n)|^2 (\epsilon \xi (\nu , \nu ))^{2|n|} |n|^{2(s-1)} \end{aligned}$$

for \(\nu = 1, 2\). Here, we set \(\varLambda _N' = \{p \in \mathbb {Z}\mid -N/2 < p \le N/2\}\). In the following, we provide estimates for \(T_j^{(1)}\) for \(j = 1, 2, 3, 4\).

Utilizing the relations (3.7), the Fourier coefficients \(\hat{q}_\nu ^{(N)}(n)\) can be obtained explicitly as follows:

$$\begin{aligned} \begin{pmatrix} \hat{q}_1^{(N)}(n) \\[1ex] \hat{q}_2^{(N)}(n) \end{pmatrix} = \frac{1}{\det \varPhi ^\mathrm {C}(n)} \sum _{m \equiv n} \sum _{l \equiv n} \begin{pmatrix} \varUpsilon _1(m, l) \hat{q}_1(m) + \varUpsilon _2(m, l) \hat{q}_2(m) \\[1ex] \varUpsilon _3(m, l) \hat{q}_1(m) + \varUpsilon _4(m, l) \hat{q}_2(m) \end{pmatrix}, \end{aligned}$$

where

$$\begin{aligned} \varUpsilon _1(m, l)&= \hat{G}_{11}(m) \hat{G}_{22}(l) - \hat{G}_{21}(m) \hat{G}_{12}(l), \\ \varUpsilon _2(m, l)&= \hat{G}_{12}(m) \hat{G}_{22}(l) - \hat{G}_{22}(m) \hat{G}_{12}(l), \\ \varUpsilon _3(m, l)&= -\hat{G}_{11}(m) \hat{G}_{21}(l) + \hat{G}_{21}(m) \hat{G}_{11}(l), \\ \varUpsilon _4(m, l)&= -\hat{G}_{12}(m) \hat{G}_{21}(l) + \hat{G}_{22}(m) \hat{G}_{11}(l). \end{aligned}$$

We will employ the following proposition without proof.

Proposition 8

  1. (i)

    There exist some positive constants \(C_j\) (\(j = 1, 2, 3, 4\)) such that

    $$\begin{aligned}&|\varUpsilon _1(m, l)| \le \frac{C_1}{\underline{m} \cdot \underline{l}} \left( \frac{\rho _1}{R_1}\right) ^{|m|} \left( \frac{R_2}{\rho _2}\right) ^{|l|}, \quad |\varUpsilon _2(m, l)| \le \frac{C_2}{\underline{m} \cdot \underline{l}} \left( \frac{R_2}{\rho _2}\right) ^{|m|+|l|}, \\&|\varUpsilon _3(m, l)| \le \frac{C_3}{\underline{m} \cdot \underline{l}} \left( \frac{\rho _1}{R_1}\right) ^{|m|+|l|}, \quad |\varUpsilon _4(m, l)| \le \frac{C_4}{\underline{m} \cdot \underline{l}} \left( \frac{R_2}{\rho _2}\right) ^{|m|} \left( \frac{\rho _1}{R_1}\right) ^{|l|}. \end{aligned}$$
  2. (ii)

    There exists some positive constant \(C_{\rho _1,\,\rho _2,\,R_1,\,R_2}\) such that

    $$\begin{aligned} \frac{1}{(\det \varPhi ^\mathrm {C}(0))^2} \le C_{\rho _1,\,\rho _2,\,R_1,\,R_2} \end{aligned}$$

    holds for all \(N \in \mathbb {N}\).

  3. (iii)

    There exists some positive constant \(C_{\rho _1, \rho _2, R_1, R_2}\) such that

    $$\begin{aligned} \frac{1}{(\det \varPhi ^\mathrm {C}(n))^2} \le C_{\rho _1, \rho _2, R_1, R_2} |n|^4 \left( \frac{R_1}{\rho _1}\right) ^{2|n|} \left( \frac{\rho _2}{R_2}\right) ^{2|n|} \end{aligned}$$

    holds for all \(N \in \mathbb {N}\), and all \(n \in \varLambda _N' {\setminus } \{0\}\).

  4. (iv)

    For all \((\epsilon , s) \in \ ]0, +\infty [ \times \mathbb {R}\) with \((\epsilon , s) < (1, -1)\), there exists some positive constant \(C_{\epsilon , s}\) such that

    $$\begin{aligned} \sum _{m \in I(p)} |m|^s \epsilon ^{|m|} \le C_{\epsilon , s} N^s \epsilon ^{N-|p|} \end{aligned}$$

    holds for all \(N \in \mathbb {N}\), and all \(p \in \varLambda _N'\).

  5. (v)

    For all \((\epsilon , s) \in \ ]0, 1[ \times \mathbb {R}\), there exists some positive constant \(C_{\epsilon , s}\) such that

    $$\begin{aligned} \max _{p \in \varLambda _N' {\setminus } \{0\}} \left( \left( \frac{N}{|p|}\right) ^s \epsilon ^{N-2|p|} \right) \le C_{\epsilon , s} \end{aligned}$$

    holds for all \(N \in \mathbb {N}\).

\(T_1^{(1)}\) can be bounded as

$$\begin{aligned} T_1^{(1)} \le T_{11}^{(1)} + T_{12}^{(1)} + T_{13}^{(1)}, \end{aligned}$$

where

$$\begin{aligned} T_{11}^{(1)}&= \frac{3}{(\det \varPhi ^\mathrm {C}(0))^2} \left( \sum _{m \in I(0)} \sum _{l \equiv 0} |\varUpsilon _1(m, l)| |\hat{q}_1(0)| \right) ^2,\\ T_{12}^{(1)}&= \frac{3}{(\det \varPhi ^\mathrm {C}(0))^2} \left( \sum _{m \in I(0)} \sum _{l \equiv 0} |\varUpsilon _1(m, l)| |\hat{q}_1(m)| \right) ^2, \\ T_{13}^{(1)}&= \frac{3}{(\det \varPhi ^\mathrm {C}(0))^2} \left( \sum _{\begin{array}{c} m, l \equiv 0 \\ m \ne l \end{array}} |\varUpsilon _2(m, l)| |\hat{q}_2(m)| \right) ^2. \end{aligned}$$

By using Proposition 8 (i), (ii), and (iv), we have that

$$\begin{aligned} T_{11}^{(1)}&\le C_{11}^{(1)} \left( \sum _{m \in I(0)} \sum _{l \equiv 0} \frac{1}{\underline{m} \cdot \underline{l}} \left( \frac{\rho _1}{R_1}\right) ^{|m|} \left( \frac{R_2}{\rho _2}\right) ^{|l|} \right) ^2 |\hat{q}_1(0)|^2 \\&\le C_{11}^{(1)} N^{-2} \left( \frac{\rho _1}{R_1}\right) ^{2N} \Vert q_1\Vert _{\delta \rho _1/R_1, t-1}^2. \end{aligned}$$

By assumption, we have that \(\delta r^2 \le \epsilon \). Therefore, the following inequalities can be obtained:

By using Proposition 8 (i), (ii), and (iv), we have that

$$\begin{aligned} T_{12}^{(1)}&\le C_{12}^{(1)} \left( \sum _{m \in I(0)} \sum _{l \equiv 0} \frac{1}{\underline{m} \cdot \underline{l}} \left( \frac{\rho _1}{R_1}\right) ^{|m|} \left( \frac{R_2}{\rho _2}\right) ^{|l|} |\hat{q}_1(m)| \right) ^2 \\&\le C_{12}^{(1)} \sum _{m \in I(0)} \frac{1}{\delta ^{2|m|}} \frac{1}{\underline{m}^{2t}} \sum _{m \in I(0)} |\hat{q}_1(m)|^2 \left( \frac{\delta \rho _1}{R_1}\right) ^{2|m|} \underline{m}^{2(t-1)}\\&\le C_{12}^{(1)} N^{-2t} \frac{1}{\delta ^{2N}} \Vert q_1\Vert _{\delta \rho _1/R_1, t-1}^2. \end{aligned}$$

The assumption that \(1/\delta \le \epsilon \) implies that

Then, \(T_{13}^{(1)}\) is bounded by splitting it into the following three terms:

$$\begin{aligned} T_{13}^{(1)} \le T_{131}^{(1)} + T_{132}^{(1)} + T_{133}^{(1)}, \end{aligned}$$

where

$$\begin{aligned} T_{131}&= \frac{9}{(\det \varPhi ^\mathrm {C}(0))^2} \left( \sum _{l \in I(0)} |\varUpsilon _2(0, l)| |\hat{q}_2(0)| \right) ^2, \\ T_{132}&= \frac{9}{(\det \varPhi ^\mathrm {C}(0))^2} \left( \sum _{m \in I(0)} |\varUpsilon _2(m, 0)| |\hat{q}_2(m)| \right) ^2, \\ T_{133}&= \frac{9}{(\det \varPhi ^\mathrm {C}(0))^2} \left( \sum _{m, l \in I(0)} |\varUpsilon _2(m, l)| |\hat{q}_2(m)| \right) ^2. \end{aligned}$$

In the same manner as in deriving an estimate for \(T_{11}^{(1)}\), \(T_{131}^{(1)}\) can be bounded by Proposition 8 (i), (ii), and (iv) as follows:

In a similar manner as for estimating \(T_{12}^{(1)}\), a bound for \(T_{132}^{(1)}\) can be given by

by Proposition 8 (i), (ii), and (iv). Furthermore, \(T_{133}^{(1)}\) can be estimated using Proposition 8 (i), (ii), and (iv) and the relation \(\epsilon /\delta > (r/\delta )^2\), as follows:

$$\begin{aligned} T_{133}^{(1)}&\le C_{133}^{(1)} \left( \sum _{m \in I(0)} \sum _{l \in I(0)} \frac{1}{\underline{m} \cdot \underline{l}} \left( \frac{R_2}{\rho _2}\right) ^{|m| + |l|} |\hat{q}_2(m)| \right) ^2\\&\le C_{133}^{(1)} N^{2(s-t)} \left( \frac{\epsilon }{\delta }\right) ^N \Vert q_2\Vert _{\delta R_2/\rho _2, t-1}^2. \end{aligned}$$

Summarizing the above, we can obtain the following bound for \(T_1^{(1)}\):

Next, we estimate \(T_2^{(1)}\). Because we can estimate \(|\hat{q}_1(n) - \hat{q}_1^{(N)}(n)|^2\) as

$$\begin{aligned} |\hat{q}_1(n) - \hat{q}_1^{(N)}(n)|^2&\le \frac{3}{(\det \varPhi ^\mathrm {C}(n))^2} \left[ \left( \sum _{m \in I(n)} \sum _{l \equiv n} |\varUpsilon _1(m, l)| |\hat{q}_1(n)| \right) ^2 \right. \\&\quad \left. + \left( \sum _{m \in I(n)} \sum _{l \equiv n} |\varUpsilon _1(m, l)| |\hat{q}_1(m)| \right) ^2\right. \\&\quad \left. + \left( \sum _{\begin{array}{c} m, l \equiv n \\ m \ne l \end{array}} |\varUpsilon _2(m, l)| |\hat{q}_2(m)| \right) ^2 \right] , \end{aligned}$$

we have that

$$\begin{aligned} T_2^{(1)}&\le T_{21}^{(1)} + T_{22}^{(1)} + T_{23}^{(1)}, \end{aligned}$$

where

$$\begin{aligned} T_{21}^{(1)}&= \sum _{n \in \varLambda _N' {\setminus } \{0\}} \frac{3}{(\det \varPhi ^\mathrm {C}(n))^2} \left( \sum _{m \in I(n)} \sum _{l \equiv n} |\varUpsilon _1(m, l)| |\hat{q}_1(n)| \right) ^2 \left( \frac{\epsilon \rho _1}{R_1}\right) ^{2|n|} |n|^{2(s-1)}, \\ T_{22}^{(1)}&= \sum _{n \in \varLambda _N' {\setminus } \{0\}} \frac{3}{(\det \varPhi ^\mathrm {C}(n))^2} \left( \sum _{m \in I(n)} \sum _{l \equiv n} |\varUpsilon _1(m, l)| |\hat{q}_1(m)| \right) ^2 \left( \frac{\epsilon \rho _1}{R_1}\right) ^{2|n|} |n|^{2(s-1)}, \\ T_{23}^{(1)}&= \sum _{n \in \varLambda _N' {\setminus } \{0\}} \frac{3}{(\det \varPhi ^\mathrm {C}(n))^2} \left( \sum _{\begin{array}{c} m, l \equiv n \\ m \ne l \end{array}} |\varUpsilon _2(m, l)| |\hat{q}_2(m)| \right) ^2 \left( \frac{\epsilon \rho _1}{R_1}\right) ^{2|n|} |n|^{2(s-1)}. \end{aligned}$$

Using Proposition 8 (i), (iii), and (iv), for \(n \in \varLambda _N' {\setminus } \{0\}\), we have that

$$\begin{aligned}&\frac{1}{(\det \varPhi ^\mathrm {C}(n))^2} \left( \sum _{m \in I(n)} \sum _{l \equiv n} |\varUpsilon _1(m, l)| |\hat{q}_1(n)| \right) ^2 \\&\quad \le C_{21}^{(1)} |n|^4 \left( \frac{R_1}{\rho _1}\right) ^{2|n|} \left( \frac{\rho _2}{R_2}\right) ^{2|n|} \left( \sum _{m \in I(n)} \sum _{l \equiv n} \frac{1}{\underline{m} \cdot \underline{l}} \left( \frac{\rho _1}{R_1}\right) ^{|m|} \left( \frac{R_2}{\rho _2}\right) ^{|l|} \right) ^2 |\hat{q}_1(n)|^2 \\&\quad \le C_{21}^{(1)} |n|^2N^{-2}\left( \frac{\rho _1}{R_1}\right) ^{2(N-2|n|)} |\hat{q}_1(n)|^2, \end{aligned}$$

which yields that

$$\begin{aligned} T_{21}^{(1)}&\le C_{21}^{(1)} \sum _{n \in \varLambda _N' {\setminus } \{0\}} |n|^2 N^{-2} \left( \frac{\rho _1}{R_1}\right) ^{2(N-2|n|)} |\hat{q}_1(n)|^2 \left( \frac{\epsilon \rho _1}{R_1}\right) ^{2|n|} |n|^{2(s-1)} \\&\le C_{21}^{(1)} N^{2[-1+\max \{s-t+1, 0\}]} \left( \frac{\epsilon }{\delta }\right) ^N \Vert q_1\Vert _{\delta \rho _1/R_1, t-1}^2 A_{21}^{(1)}, \end{aligned}$$

where

$$\begin{aligned} A_{21}^{(1)} = \sup _{n \in \varLambda _N' {\setminus } \{0\}} \left[ \left( \frac{\delta r^2}{\epsilon }\right) ^{N-2|n|} |n|^{2(s-t+1)} N^{-2\max \{s-t+1, 0\}} \right] . \end{aligned}$$

Because this constant can be evaluated using Proposition 8 (v) as

we obtain that

By Proposition 8 (i), (iii), and (iv), we have that

$$\begin{aligned}&\frac{1}{(\det \varPhi ^\mathrm {C}(n))^2} \left( \sum _{m \in I(n)} \sum _{l \equiv n} |\varUpsilon _1(m, l)| |\hat{q}_1(m)| \right) ^2 \\&\quad \le C_{22}^{(1)} |n|^4 \left( \frac{R_1}{\rho _1}\right) ^{2|n|} \left( \frac{\rho _2}{R_2}\right) ^{2|n|} \left( \sum _{m \in I(n)} \sum _{l \equiv n} \frac{1}{\underline{m} \cdot \underline{l}} \left( \frac{\rho _1}{R_1}\right) ^{|m|} \left( \frac{R_2}{\rho _2}\right) ^{|l|} |\hat{q}_1(m)| \right) ^2 \\&\quad \le C_{22}^{(1)} |n|^2 N^{-2t} \frac{1}{\delta ^{2(N-|n|)}} \left( \frac{R_1}{\rho _1}\right) ^{2|n|} \sum _{m \in I(n)} |\hat{q}_1(m)|^2 \left( \frac{\delta \rho _1}{R_1}\right) ^{2|m|} \underline{m}^{2(t-1)} \end{aligned}$$

for \(n \in \varLambda _N' {\setminus } \{0\}\). Therefore, \(T_{22}^{(1)}\) can be bounded as follows:

$$\begin{aligned} T_{22}^{(1)}&\le C_{22}^{(1)} \sum _{n \in \varLambda _N' {\setminus } \{0\}} |n|^2 N^{-2t} \frac{1}{\delta ^{2(N-|n|)}} \left( \frac{R_1}{\rho _1}\right) ^{2|n|} \left( \frac{\epsilon \rho _1}{R_1}\right) ^{2|n|} |n|^{2(s-1)}\\&\quad \times \sum _{m \in I(n)} |\hat{q}_1(m)|^2 \left( \frac{\delta \rho _1}{R_1}\right) ^{2|m|} \underline{m}^{2(t-1)} \\&\le C_{22}^{(1)} N^{2[-t+\max \{s, 0\}]} \left( \frac{\epsilon }{\delta }\right) ^N \Vert q_1\Vert _{\delta \rho _1/R_1, t-1}^2 A_{22}^{(1)}, \end{aligned}$$

where

$$\begin{aligned} A_{22}^{(1)} = \sup _{n \in \varLambda _N' {\setminus } \{0\}} \left[ \left( \frac{1}{\epsilon \delta }\right) ^{N-2|n|} |n|^{2s} N^{-2\max \{s, 0\}}\right] , \end{aligned}$$

which can be bounded as

by Proposition 8 (v). Then, we obtain the following estimate for \(T_{22}^{(1)}\):

Concerning the estimation of \(T_{23}^{(1)}\), we use Proposition 8 (i), (iii), and (iv) to yield that

$$\begin{aligned}&\frac{1}{(\det \varPhi ^\mathrm {C}(n))^2} \left( \sum _{\begin{array}{c} m, l \equiv n \\ m \ne l \end{array}} |\varUpsilon _2(m, l)| |\hat{q}_2(m)| \right) ^2 \\&\quad \le C |n|^4 \left( \frac{R_1}{\rho _1}\right) ^{2|n|} \left( \frac{\rho _2}{R_2}\right) ^{2|n|} \left( \sum _{\begin{array}{c} m, l \equiv n \\ m \ne l \end{array}} \frac{1}{\underline{m} \cdot \underline{l}} \left( \frac{R_2}{\rho _2}\right) ^{|m|+|l|} |\hat{q}_2(m)|\right) ^2 \\&\quad \le C_{231}^{(1)} |n|^2 N^{-2} \left( \frac{R_1}{\rho _1}\right) ^{2|n|} \left( \frac{R_2}{\rho _2}\right) ^{2(N-|n|)} |\hat{q}_2(n)|^2 \\&\qquad + C_{232}^{(1)} |n|^2 \left( \frac{R_1}{\rho _1}\right) ^{2|n|} \frac{1}{\delta ^{2(N-|n|)}} N^{-2t} \sum _{m \in I(n)} |\hat{q}_2(m)|^2 \left( \frac{\delta R_2}{\rho _2}\right) ^{2|m|} \underline{m}^{2(t-1)} \\&\qquad + C_{233}^{(1)} |n|^4 N^{-2(t+1)} \left( \frac{R_1}{\rho _1}\right) ^{2|n|} \left( \frac{R_2}{\rho _2}\right) ^{2(N-2|n|)} \frac{1}{\delta ^{2(N-|n|)}}\\&\qquad \times \sum _{m \in I(n)} |\hat{q}_2(m)|^2 \left( \frac{\delta R_2}{\rho _2}\right) ^{2|m|} \underline{m}^{2(t-1)}, \end{aligned}$$

which implies that

$$\begin{aligned} T_{23}^{(1)}&\le T_{231}^{(1)} + T_{232}^{(1)} + T_{233}^{(1)}, \end{aligned}$$

where

$$\begin{aligned} T_{231}^{(1)}&= C_{231}^{(1)} \sum _{n \in \varLambda _N' {\setminus } \{0\}} \epsilon ^{2|n|} |n|^{2s} N^{-2} \left( \frac{R_2}{\rho _2}\right) ^{2(N-|n|)} |\hat{q}_2(n)|^2, \\ T_{232}^{(2)}&= C_{232}^{(1)} \sum _{n \in \varLambda _N' {\setminus } \{0\}} \epsilon ^{2|n|} |n|^{2s} \frac{1}{\delta ^{2(N-2|n|)}} N^{-2t} \sum _{m \in I(n)} |\hat{q}_2(m)|^2 \left( \frac{\delta R_2}{\rho _2}\right) ^{2|m|} \underline{m}^{2(t-1)}, \\ T_{233}^{(1)}&= C_{233}^{(1)} \sum _{n \in \varLambda _N' {\setminus } \{0\}} \epsilon ^{2|n|} |n|^{2(s+1)} N^{-2(t+1)} \left( \frac{R_2}{\rho _2}\right) ^{2(N-2|n|)} \frac{1}{\delta ^{2(N-|n|)}}\\&\quad \times \sum _{m \in I(n)} |\hat{q}_2(m)|^2 \left( \frac{\delta R_2}{\rho _2}\right) ^{2|m|} \underline{m}^{2(t-1)}. \end{aligned}$$

We estimate each of these quantities below. Concerning \(T_{231}^{(1)}\), we have that

$$\begin{aligned} T_{231}^{(1)}&\le C_{231}^{(1)} N^{2[-1+\max \{s-t+1, 0\}]} \left( \frac{\epsilon }{\delta }\right) ^N \Vert q_2\Vert _{\delta R_2/\rho _2, t-1}^2 A_{231}^{(1)}, \end{aligned}$$

where

$$\begin{aligned} A_{231}^{(1)} = \sup _{n \in \varLambda _N' {\setminus } \{0\}} \left[ |n|^{2(s-t+1)} N^{-2\max \{s-t+1, 0\}} \left( \frac{\delta r^2}{\epsilon }\right) ^{N-2|n|} \right] . \end{aligned}$$

This can be bounded by virtue of Proposition 8 (v) as follows:

Therefore, we can determine an estimate for \(T_{231}^{(1)}\) as

Concerning \(T_{232}^{(1)}\), we have that

$$\begin{aligned} T_{232}^{(1)}&\le C_{232}^{(1)} N^{2[-t+\max \{s, 0\}]} \left( \frac{\epsilon }{\delta }\right) ^N \Vert q_2\Vert _{\delta R_2/\rho _2, t-1}^2 A_{232}^{(1)}, \end{aligned}$$

where

$$\begin{aligned} A_{232}^{(1)} = \sup _{n \in \varLambda _N' {\setminus } \{0\}} \left[ |n|^{2s} N^{-2\max \{s, 0\}} \left( \frac{1}{\delta \epsilon }\right) ^{N-2|n|} \right] . \end{aligned}$$

The constant \(A_{232}^{(1)}\) can be bounded by using Proposition 8 (v), as follows:

Then, we obtain the following estimate for \(T_{232}^{(1)}\):

Finally, for \(T_{233}^{(1)}\) we have that

$$\begin{aligned} T_{233}^{(1)}&\le C_{233}^{(1)} N^{2(s-t)} \left( \frac{\epsilon }{\delta }\right) ^N \Vert q_2\Vert _{\delta R_2/\rho _2, t-1}^2 \sup _{n \in \varLambda _N' {\setminus } \{0\}} \left[ \left( \frac{N}{|n|}\right) ^{-2(s+1)} \left\{ \frac{1}{\epsilon \delta } \left( \frac{R_2}{\rho _2}\right) ^2 \right\} ^{N-2|n|} \right] . \end{aligned}$$

The above supremum can be bounded by some constant, because \((\epsilon \delta )^{-1} (R_2/\rho _2)^2 < 1\), and so we obtain that

$$\begin{aligned} T_{233}^{(1)} \le C_{233}^{(1)} N^{2(s-t)} \left( \frac{\epsilon }{\delta }\right) ^N \Vert q_2\Vert _{\delta R_2/\rho _2, t-1}^2. \end{aligned}$$

Summarizing the above, we obtain the following estimate for \(T_2^{(1)}\):

Next, we give the estimate for \(T_3^{(1)}\). We divide \(T_3^{(1)}\) into two parts, as follows:

$$\begin{aligned} T_3^{(1)} = T_{31}^{(1)} + T_{32}^{(2)}, \end{aligned}$$

where

$$\begin{aligned} T_{31}^{(1)}&= \sum _{l \in \mathbb {Z}{\setminus } \{0\}} |lN|^{2(s-1)} \left( \frac{\epsilon \rho _1}{R_1}\right) ^{2|lN|} |\hat{q}_1^{(N)}(0)|^2, \\ T_{32}^{(2)}&= \sum _{p \in \varLambda _N' {\setminus } \{0\}} \left( \sum _{l \in \mathbb {Z}{\setminus } \{0\}} |p + lN|^{2(s-1)} \left( \frac{\epsilon \rho _1}{R_1}\right) ^{2|p+lN|} \right) |\hat{q}_1^{(N)}(p)|^2. \end{aligned}$$

First, we estimate \(T_{31}^{(1)}\). By Proposition 8 (iv), we have that

$$\begin{aligned} \sum _{l \in \mathbb {Z}{\setminus } \{0\}} |lN|^{2(s-1)} \left( \frac{\epsilon \rho _1}{R_1}\right) ^{2|lN|}&= \sum _{m \in I(0)} |m|^{2(s-1)} \left( \frac{\epsilon \rho _1}{R_1}\right) ^{2|m|}\\&\le C_{\epsilon r, 2(s-1)} N^{2(s-1)} (\epsilon r)^{2N} \end{aligned}$$

and by Proposition 8 (i) and (ii) we have that

$$\begin{aligned} |\hat{q}_1^{(N)}(0)|^2&\le \frac{2}{(\det \varPhi ^\mathrm {C}(0))^2} \left[ \left( \sum _{m \equiv 0} \sum _{l \equiv 0} |\varUpsilon _1(m, l)| |\hat{q}_1(m)|\right) ^2\right. \\&\quad \left. + \left( \sum _{m \equiv 0} \sum _{l \equiv 0} |\varUpsilon _2(m, l)| |\hat{q}_2(m)|)\right) ^2 \right] \\&\le C \Vert q\Vert _{\mathbb {Y}_{\delta , t}}^2. \end{aligned}$$

Because it holds by definition that \(\epsilon \le 1 / (\delta r^2)\), we obtain that

Concerning \(T_{32}^{(1)}\), we have by virtue of Proposition 8 (iv) that

$$\begin{aligned} \sum _{l \in \mathbb {Z}{\setminus } \{0\}} |p + lN|^{2(s-1)} \left( \frac{\epsilon \rho _1}{R_1}\right) ^{2|p+lN|} \le C_{\epsilon \rho _1/R_1, 2(s-1)} N^{2(s-1)} \left( \frac{\epsilon \rho _1}{R_1}\right) ^{2(N-|p|)} \end{aligned}$$

for all \(p \in \varLambda _N' {\setminus } \{0\}\). Furthermore, it follows from Proposition 8 (i) and (iii) that

$$\begin{aligned} |\hat{q}_1^{(N)}(p)|^2&\le \frac{2}{(\det \varPhi ^\mathrm {C}(p))^2} \left[ \left( \sum _{m \equiv p} \sum _{l \equiv p} |\varUpsilon _1(m, l)| |\hat{q}_1(m)|\right) ^2\right. \\&\quad \left. + \left( \sum _{m \equiv p} \sum _{l \equiv p} |\varUpsilon _2(m, l)| |\hat{q}_2(m)|\right) ^2 \right] \\&\le C |p|^2 \left( \frac{R_1}{\rho _1}\right) ^{2|p|} \left( \frac{1}{\delta ^{2|p|}} \frac{1}{|p|^{2t}} + \frac{1}{\delta ^{2(N-|p|)}} \frac{1}{N^{2t}} \right) \\&\quad \times \left[ \sum _{m \equiv p} |\hat{q}_1(m)|^2 \left( \frac{\delta \rho _1}{R_1}\right) ^{2|m|} \underline{m}^{2(t-1)}\right. \\&\quad \left. + \sum _{m \equiv p} |\hat{q}_2(m)|^2 \left( \frac{\delta R_2}{\rho _2}\right) ^{2|m|} \underline{m}^{2(t-1)} \right] . \end{aligned}$$

Therefore, we obtain that

$$\begin{aligned} T_{32}^{(1)} \le C_{32}^{(1)} N^{2[s - 1 + \max \{-t + 1, 0\}]} \left( \frac{\epsilon }{\delta }\right) ^N \Vert q\Vert _{\mathbb {Y}_{\delta , t}}^2 A_{32}^{(1)}, \end{aligned}$$

where

$$\begin{aligned} A_{32}^{(1)} = \sup _{p \in \varLambda _N' {\setminus } \{0\}} \left\{ \frac{N^{-2\max \{-t+1, 0\}}}{|p|^{2(t-1)}} (\epsilon \delta r^2)^{N - 2|p|} + |p|^2 N^{-2[t + \max \{-t+1, 0\}]} \left( \frac{\epsilon r^2}{\delta }\right) ^{N - 2|p|} \right\} . \end{aligned}$$

This supremum can be bounded as follows:

Then, we obtain the following estimate for \(T_{32}^{(1)}\):

Summarizing the above, we have that

Finally, we will establish the estimate for \(T_4^{(1)}\), which can be obtained by straightforward arguments as follows:

$$\begin{aligned} T_4^{(1)}&= \sum _{n \in \mathbb {Z}{\setminus } \varLambda _N'} |\hat{q}_1(n)|^2 \left( \frac{\delta \rho _1}{R_1}\right) ^{2|n|} \underline{n}^{2(t-1)} \cdot \frac{|n|^{2(s-1)}}{\underline{n}^{2(t-1)}} \left( \frac{\epsilon }{\delta }\right) ^{2|n|} \\&\le \frac{1}{(2\pi )^{2(t-1)}} N^{2(s-t)} \left( \frac{\epsilon }{\delta }\right) ^N \Vert q_1\Vert _{\delta \rho _1/R_1, t-1}^2 \sup _{n \in \mathbb {Z}{\setminus } \varLambda _N'} \left\{ \left( \frac{N}{|n|}\right) ^{-2(s-t)} \left( \frac{\epsilon }{\delta }\right) ^{2|n| - N} \right\} \\&\le C_4^{(1)} N^{2(s-t)} \left( \frac{\epsilon }{\delta }\right) ^N \Vert q_1\Vert _{\delta \rho _1/R_1, t-1}^2. \end{aligned}$$

Hence, we obtain the following estimate for \(\Vert q_1 - q_1^{(N)}\Vert _{\epsilon \rho _1/R_1, s-1}^2\):

In addition, \(\Vert q_2 - q_2^{(N)}\Vert _{\epsilon R_2/\rho _2, s-1}^2\) can be estimated in a similar manner. Thus, we obtain the desired estimate.

Proof of Lemma 2

We require one additional proposition as to the upper bound for \((\det \varPhi ^\mathrm {I}(0))^{-2}\), which will be used without proof.

Proposition 9

There exists some positive constant \(C_{\rho _1,\,\rho _2,\,R_1,\,R_2}\) such that

$$\begin{aligned} \frac{1}{(\det \varPhi ^\mathrm {I}(0))^2} \le C_{\rho _1,\,\rho _2,\,R_1,\,R_2} \end{aligned}$$

holds for all \(N \in \mathbb {N}\).

We can represent \(\hat{q}_1^{(N)}(0)\) explicitly from (3.8), which yields that

$$\begin{aligned}&\hat{q}_1(0) - \hat{q}_1^{(N)}(0) \\&\quad = \frac{1}{\det \varPhi ^\mathrm {I}(0)} \left[ B_1 \hat{q}_1(0) - B_1 \hat{q}_2(0) + \sum _{l \in I(0)} \left( B_3(l) \hat{q}_1(l) + B_4(l) \hat{q}_2(l) \right) \right] , \end{aligned}$$

where

$$\begin{aligned} B_1 =&\frac{1}{2} \sum _{m \in I(0)} (-\hat{G}_{11}(m) + \hat{G}_{12}(m) + \hat{G}_{21}(m) - \hat{G}_{22}(m) - \varUpsilon _1(m, 0)\\&+ \varUpsilon _2(m, 0) - \varUpsilon _3(m, 0) + \varUpsilon _4(m, 0)), \\ B_3(l) =&\hat{G}_{11}(l) - \hat{G}_{12}(l) + \varUpsilon _4(0, l) - \varUpsilon _3(0, l) - \sum _{m \in I(0)} (\varUpsilon _3(m, l) - \varUpsilon _4(m, l)), \\ B_4(l) =&\hat{G}_{21}(l) - \hat{G}_{22}(l) - \varUpsilon _2(0, l) + \varUpsilon _1(0, l) - \sum _{m \in I(0)} (-\varUpsilon _1(m, l) + \varUpsilon _2(m, l)). \end{aligned}$$

Each term can be evaluated as follows, by Proposition 8 (i) and (iv):

$$\begin{aligned} |B_1 \hat{q}_1(0)|^2&\le C_{11}^{(1)} N^{-2} r^{2N} \Vert q_1\Vert _{\delta \rho _1/R_1, t-1}^2, \\ |B_1 \hat{q}_2(0)|^2&\le C_{12}^{(1)} N^{-2} r^{2N} \Vert q_2\Vert _{\delta R_2/\rho _2, t-1}^2,\\ \left| \sum _{l \in I(0)} B_3(l) \hat{q}_1(l) \right| ^2&\le C_{13}^{(1)} \sum _{l \in I(0)} \frac{1}{\delta ^{2|l|}} \frac{1}{\underline{l}^{2t}} \sum _{l \in I(0)} |\hat{q}_1(l)|^2 \left( \frac{\delta \rho _1}{R_1}\right) ^{2|l|} \underline{l}^{2t}\\&\le C_{13}^{(1)} N^{-2t} \delta ^{-2N} \Vert q_1\Vert _{\delta \rho _1/R_1, t-1}^2, \\ \left| \sum _{l \in I(0)} B_4(l) \hat{q}_2(l) \right| ^2&\le C_{14}^{(1)} \sum _{l \in I(0)} \frac{1}{\delta ^{2|l|}} \frac{1}{\underline{l}^{2t}} \sum _{l \in I(0)} |\hat{q}_2(l)|^2 \left( \frac{\delta R_2}{\rho _2}\right) ^{2|l|} \underline{l}^{2t} \\&\le C_{14}^{(1)} N^{-2t} \delta ^{-2N} \Vert q_2\Vert _{\delta R_2/\rho _2, t-1}^2. \end{aligned}$$

Therefore, using Proposition 9 (i), we obtain that

Because \(\hat{q}_1^{(N)}(n)\) (\(n \in \varLambda _N' {\setminus } \{0\}\)) are the same as for C-MFS, we immediately obtain the estimate

Now we consider \(T_3^{(1)}\), which we decompose as follows:

$$\begin{aligned} T_3^{(1)} = T_{31}^{(1)} + T_{32}^{(1)}, \end{aligned}$$

where

$$\begin{aligned} T_{31}^{(1)}&= \sum _{l \in \mathbb {Z}{\setminus } \{0\}} |lN|^{2(s-1)} \left( \frac{\epsilon \rho _1}{R_1}\right) ^{2|lN|} |\hat{q}_1^{(N)}(N)|^2, \\ T_{32}^{(2)}&= \sum _{p \in \varLambda _N' {\setminus } \{0\}} \left( \sum _{l \in \mathbb {Z}{\setminus } \{0\}} |p + lN|^{2(s - t)} \left( \frac{\epsilon \rho _1}{R_1}\right) ^{2|p + lN|} \right) |\hat{q}_1^{(N)}(p)|^2. \end{aligned}$$

The definition of \(T_{31}^{(1)}\) is slightly different from that for C-MFS, while that of \(T_{32}^{(1)}\) is the same as for C-MFS. Therefore, we only have to consider the estimate of \(T_{31}^{(1)}\). From (3.8), we have that

$$\begin{aligned} \hat{q}_1^{(N)}(N)&= \frac{1}{\det \varPhi ^\mathrm {I}(0)} \left[ \frac{1}{2} (\hat{G}_{12}(0) - \hat{G}_{22}(0)) \hat{q}_1(0) + \frac{1}{2} (\hat{G}_{22}(0) - \hat{G}_{12}(0)) \hat{q}_2(0) \right. \\&\quad \left. +\, \sum _{l \in I(0)} \left( (\hat{G}_{21}(l) - \hat{G}_{11}(l)) \hat{q}_1(l) + (\hat{G}_{22}(l) - \hat{G}_{12}(l)) \hat{q}_2(l) \right) \right] , \end{aligned}$$

from which we can easily obtain by Proposition 8 (ii) and Proposition 9 that

$$\begin{aligned} |\hat{q}_1^{(N)}(N)|^2 \le C\Vert q\Vert _{\mathbb {Y}_{\delta , t}}^2. \end{aligned}$$

By using the results in Sect. 1, we have that

The estimate of \(T_4^{(1)}\) is the same as for C-MFS. That is,

$$\begin{aligned} T_4^{(1)} \le C_4^{(1)} N^{2(s-t)} \left( \frac{\epsilon }{\delta }\right) ^N \Vert q_1\Vert _{\delta \rho _1/R_1, t-1}^2. \end{aligned}$$

Summarizing the above, we obtain the following estimate for \(\Vert q_1 - q_1^{(N)}\Vert _{\epsilon \rho _1/R_1, s-1}^2\):

Then \(\Vert q_2 - q_2^{(N)}\Vert _{\epsilon R_2/\rho _2, s-1}^2\) can be estimated in a similar manner, and we obtain the desired estimate.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakakibara, K. Asymptotic analysis of the conventional and invariant schemes for the method of fundamental solutions applied to potential problems in doubly-connected regions. Japan J. Indust. Appl. Math. 34, 177–228 (2017). https://doi.org/10.1007/s13160-017-0241-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-017-0241-4

Keywords

Mathematics Subject Classification

Navigation