Skip to main content
Log in

Nonlinear Kalman filtering via ultradiscretization procedure

  • Original Paper
  • Area 3
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

A new filtering method for a nonlinear system is proposed. The original nonlinear system is reduced to a piecewise linear system through the procedure of ultradiscretization. Then the discrete-time Kalman filter is readily applied to the obtained system by imposing some conditions on system variables and parameters. Some numerical experiments are given to show the efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Fluids Eng. 82(1), 35–45 (1960)

    Google Scholar 

  2. Jazwinski, A.H.: Stochastic processes and filtering theory. Academic Press, New York (1970)

    MATH  Google Scholar 

  3. Tokihiro, T., Takahashi, D., Matsukidaira, J., Satsuma, J.: From soliton equations to integrable cellular automata through a limiting procedure. Phys. Rev. Lett. 76, 3247–3250 (1996)

    Article  Google Scholar 

  4. Quispel, G.R.W., Roberts, J.A.G., Thompson, C.J.: Integrable mappings and soliton equations II. Phys. D 34, 183–192 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ramani, A., Grammaticos, B., Satsuma, J., Mimura, N.: Linearizable QRT mappings. J. Phys. A: Math. Theor. 44, 425201 (2011)

    Article  MathSciNet  Google Scholar 

  6. Mimura, N., Isojima, S., Murata, M., Satsuma, J.: Singularity confinement test for ultradiscrete equations with parity variables. J. Phys. A: Math. Theor. 42, 315206 (2009)

    Article  MathSciNet  Google Scholar 

  7. Takemura, K., Tsutsui, T.: Ultradiscrete Painlevé VI with Parity Variables. Symmetry Integrability Geom. Methods Appl. 9, 070 (2013)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would thank Prof. T. Hayashi for useful discussion. They are also grateful to their students, Mr. Shirase, Mr. Ichiki, Ms. Kubota, Mr. Ishigaki, Mr. Arai and Mr. Yomogida for their tentative studies on discrete and ultradiscrete Kalman filter in their graduation or Master theses. This research was supported by JSPS KAKENHI 24560078 and 26790082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Isojima.

Appendix

Appendix

We derive the three periodic solution (26). If we put \(\alpha =-1\) and \(\beta =1\), (17b) and (17a) reduce to

$$\begin{aligned}&\max \left[ S(\xi _{n+1}\xi _n) + X_{n+1} + X_n, S(\eta _n) + A + Y_n \right] \nonumber \\&\quad = \max \left[ S(-\xi _{n+1}\xi _n) + X_{n+1} + X_n, S(-\eta _n) + A + Y_n, B, 2Y_n \right] , \end{aligned}$$
(38a)
$$\begin{aligned}&\max \left[ S(\eta _{n+1}\eta _n) + Y_{n+1} + Y_n, S(\xi _{n+1}) + A + X_{n+1} \right] \nonumber \\&\quad = \max \left[ S(-\eta _{n+1}\eta _n) + Y_{n+1} + Y_n, S(-\xi _{n+1}) + A + X_{n+1}, B, 2X_{n+1} \right] , \end{aligned}$$
(38b)

respectively. Substituting the initial values \((\xi _0, X_0) = (-1,C)\) and \((\eta _0, Y_0) = (1,A)\) into (38a) with \(n=0\), we have

$$\begin{aligned} \max \left[ S(-\xi _{1}) + X_{1} + C, 2A \right] = \max \left[ S(\xi _{1}) + X_{1} + C, B, 2A \right] . \end{aligned}$$
(39)

Noting \(B=A+\tilde{B}<2A\), we find that the equation is solved by

$$\begin{aligned} \xi _1=1 \text{ or } -1,\quad X_1 \le 2A -C. \end{aligned}$$
(40)

Remembering we choose \((\xi _{n+1},X_{n+1})=(-\xi _n, X_n)\) if \((\xi _{n+1},X_{n+1})\) becomes indeterminate, we take \((\xi _1,X_1)=(1, C)\), which actually satisfies (40). Next, substituting \((\xi _1,X_1)\) and \((\eta _0, Y_0)\) into (38b) with \(n=0\), we have

$$\begin{aligned} \max \left[ S(\eta _{1}) + Y_{1} + A, A + C \right] = \max \left[ S(-\eta _{1}) + Y_{1} + A, B, 2C \right] . \end{aligned}$$
(41)

This equation is uniquely solved by \((\eta _1, Y_1) = (-1, C)\). Similarly, we obtain \((\xi _2, X_2)=(1,A)\) (unique), \((\eta _2, Y_2)=(1,C)\) (indeterminate) and further \((\xi _3,X_3)=(-1,C)=(\xi _0,X_0)\) (indeterminate), \((\eta _3, Y_3)=(1,A)=(\eta _0,Y_0)\) (unique).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satsuma, J., Isojima, S. Nonlinear Kalman filtering via ultradiscretization procedure. Japan J. Indust. Appl. Math. 33, 227–238 (2016). https://doi.org/10.1007/s13160-015-0206-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-015-0206-4

Keywords

Mathematics Subject Classification

Navigation