Skip to main content
Log in

Calculation of orthant probabilities by the holonomic gradient method

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We apply the holonomic gradient method (Nakayama et al. Adv Appl Math 47:639–658, 2011) to the calculation of the probabilities of the multivariate normal distribution. The holonomic gradient method applied to finding the orthant probabilities is found to be a variant of Plackett’s recurrence relation. However, an implementation of the method yields recurrence relations that are more suitable for numerical computation than is Plackett’s recurrence relation. We derive some theoretical results on the holonomic system for the orthant probabilities. These results show that multivariate normal orthant probabilities possess some remarkable properties from the viewpoint of holonomic systems. Finally, we show that the numerical performance of our method is comparable or superior to that of existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aomoto, K.: Analytic structure of Schläfli function. Nagoya Math. J. 68, 1–16 (1977)

    MATH  MathSciNet  Google Scholar 

  2. Björk, J.E.: Rings of Differential Operators. North-Holland, New York (1979)

    MATH  Google Scholar 

  3. Dunnett, C.W., Sobel, M.: Approximations to the probability integral and certain percentage points of a multivariate analogue of Student’s \(t\)-distribution. Biometrika 42, 258–260 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gassmann, H.I.: Multivariate normal probabilities: implementing an old idea of Plackett’s. J. Comput. Graph. Stat. 12(3), 731–752 (2003)

    Article  MathSciNet  Google Scholar 

  5. Genz, A.: Numerical computation of multivariate normal probabilities. J. Comput. Graph. Stat. 1, 141–150 (1992)

    Google Scholar 

  6. Hashiguchi, H., Numata, Y., Takayama, N., Takemura, A.: Holonomic gradient method for the distribution function of the largest root of a Wishart matrix. J. Multivar. Anal. 117, 296–312 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Koyama, T.: A holonomic ideal annihilating the Fisher–Bingham integral. Funkc. Ekvacioj 56, 51–61 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Koyama, T., Nakayama, H., Nishiyama, K., Takayama, N.: Holonomic gradient descent for the Fisher–Bingham distribution on the \(d\)-dimensional sphere. Comput. Stat. 29, 661–683 (2014)

    Article  Google Scholar 

  9. Miwa, A., Hayter, J., Kuriki, S.: The evaluation of general non-centered orthant probabilities. J. R. Stat. Soc. Ser. B 65, 223–234 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nakayama, H., Nishiyama, K., Noro, M., Ohara, K., Sei, T., Takayama, N., Takemura, A.: Holonomic gradient descent and its application to the Fisher–Bingham integral. Adv. Appl. Math. 47, 639–658 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nishiyama, K., Takayama, N.: Incomplete \({\cal {A}}\)-hypergeometric systems. In: Hibi, T. (ed.) Harmony of Gröbner Bases and the Modern Industrial Society, pp. 193–212. World Scientific, Singapore (2012)

  12. Oaku, T.: Computation of the characteristic variety and the singular locus of a system of differential equations with polynomial coefficients. Jpn. J. Ind. Appl. Math. 11, 485–497 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Oaku, T.: Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities. J. Symb. Comput. 50, 1–27 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Oaku, T., Shiraki, Y., Takayama, N.: Algorithms for D-Modules and Numerical Analysis. Computer Mathematics, pp. 23–39. World Scientific, Singapore (2003)

  15. Plackett, R.L.: A reduction formula for normal multivariate integrals. Biometrika 41(3/4), 351–360 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  16. Saito, M., Sturmfels, B., Takayama, N.: Gröbner Deformations of Hypergeometric Differential Equations. Springer, Berlin (2000)

  17. Schläfli, L.: On the multiple integral \(\int ^n dxdy\dots dz\) whose limits are \(p_1=a_1x+b_1y+\dots +h_1z>0,\quad p_2>0,\dots , p_n>0\) and \(x^2+y^2+\dots +z^2<1\). Q. J. Pure Appl. Math. 2, 269–301; 3, 54–68, 97–108 (1858)

  18. Schwartz, L.: Théorie des Distributions. Hermann, Paris (1966)

    MATH  Google Scholar 

Download references

Acknowledgments

The first author is a research fellow of Japan Society for the Promotion of Science. His work is supported by Grant-in-Aid for JSPS Fellows 26.3125. The second author is supported by JSPS Grant-in-Aid for Scientific Research No. 25220001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamio Koyama.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koyama, T., Takemura, A. Calculation of orthant probabilities by the holonomic gradient method. Japan J. Indust. Appl. Math. 32, 187–204 (2015). https://doi.org/10.1007/s13160-015-0166-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-015-0166-8

Keywords

Mathematics Subject Classification

Navigation