Skip to main content
Log in

Multidimensional scaling in dually flat spaces

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Formulations of multidimensional scaling (MDS) in dually flat spaces are proposed. First the space supposed in the classical MDS is extended to a tangent space around a specific point in a dually flat space. We see that Riemannian metric of the tangent point plays a key role in the extension. Next, in order to remove the restriction of symmetry in dissimilarities, the affine connection is incorporated. We pay attention to the fact that it is an affine connection term that causes an asymmetry in dissimilarities in infinitesimal space. To mitigate the difficulty in treating the affine connection term, an approximation is shown and we can see the effect of the affine connection term to modify the effective Riemannian metric. Finally a numerical example is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borg, I., Groenen, P.: Modern Multidimensional Scaling, 2nd edn. Springer, New York (2005)

    MATH  Google Scholar 

  2. Gower, J.C.: Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 325–338 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  3. Torgerson, W.S.: Theory and Methods of Scaling. Wiley, New York (1958)

    Google Scholar 

  4. Chino, N.: A graphical technique for representing the asymmetric relationships between \(N\) objects. Behaviormetrika 5, 23–40 (1978)

    Article  Google Scholar 

  5. Chino, N.: A generalized inner product model for the analysis of assymetry. Behaviormetrika 27, 25–46 (1990)

    Article  Google Scholar 

  6. Chino, N., Shiraiwa, K.: Geometrical structures of some non-distance models for asymmetric MDS. Behaviormetrika 20, 35–47 (1993)

    Article  Google Scholar 

  7. Chino, N.: A brief survey of asymmetric MDS and some open problems. Behaviormetrika 39, 127–165 (2012)

    Article  Google Scholar 

  8. Escoufier, Y., Grorud, A.: Analyse factorielle des matrices carées non-symétriques. In: Diday, E., et al. (eds.) Data Analysis and Informatics, pp. 263–276. North-Holland, Amsterdam (1980)

  9. Gower, J.C.: The analysis of asymmetry and orthogonality. In: Barra, J.R., Brodeau, F., Romer, G., van Cutsem, B. (eds.) Recent Developments in Statistics, pp. 109–123. North-Holland, Amsterdam (1977)

  10. Kiers, H.A.L., Takane, Y.: A generalization of GIPSCAL of nonsymmetric data. J. Classif. 11, 79–99 (1994)

    Article  MATH  Google Scholar 

  11. Krumhansl, C.L.: Concerning the applicability of geometric models to similarity data: the interrelationship between similarity and spatial density. Psychol. Rev. 85, 445–463 (1987)

    Article  Google Scholar 

  12. Okada, A., Imaizumi, T.: Nonmetric multidimensional scaling of asymmetric proximities. Behaviormetrika 21, 81–96 (1987)

    Article  Google Scholar 

  13. Saito, T., Takeda, S.: Multidimensional scaling of asymmetric proximity: model and method. Behaviormetrika 28, 49–80 (1990)

    Article  Google Scholar 

  14. Saito, T.: Analysis of asymmetric proximity matrix by a model of distance and additive terms. Behaviormetrika 29, 45–60 (1991)

    Article  Google Scholar 

  15. Saito, T., Yadohisa, H.: Data Analysis of Asymmetric Structures. Marcel Dekker, New York (2005)

    MATH  Google Scholar 

  16. Tversky, A.: Features of similarity. Psychol. Rev. 84, 327–352 (1977)

    Article  Google Scholar 

  17. Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.): Distance Geometry: Theory, Methods, and Applications. Springer, New York (2013)

    Google Scholar 

  18. Weinberger, K.Q., Saul, L.K.: Unsupervised learning of image manifolds by semidefinite programming. Int. J. Comput. Vis. 70, 77–90 (2006)

    Article  Google Scholar 

  19. Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer, New York (2010)

    Google Scholar 

  20. Tenenbaum, J.B., Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  21. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  22. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299–1319 (1998)

    Article  Google Scholar 

  23. Kumagai, A.: Analysis of asymmetric relational data based on classical multidimensional scaling (in Japanese). Trans. Jpn Soc. Ind. Appl. Math. 20, 57–66 (2010)

    Google Scholar 

  24. Kumagai, A.: Handling asymmetry of relational data from a viewpoint of classical multidimensional scaling (in Japanese). Trans. Jpn Soc. Ind. Appl. Math. 21, 165–174 (2011)

    Google Scholar 

  25. Kumagai, A.: Extension of classical MDS to treat dissimilarities not satisfying axioms of distance. Jpn. J. Indust. Appl. Math. 31, 111–124 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  26. Plasencia-Calaña, Y., et al.: On the informativeness of asymmetric dissimilarities. Lect. Notes Comput. Sci. 7923, 75–89 (2013)

    Article  Google Scholar 

  27. Amari, S.: Methods of Information Geometry. American Mathematical Society, Providence (2001)

    Google Scholar 

  28. Cichocki, A., Amari, S.: Families of alpha- beta- and gamma-divergences: flexible and robust measures of similarities. Entropy 12, 1532–1568 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967)

    Article  Google Scholar 

  30. Csiszár, I.: Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizitat von Markoffschen Ketten, Magyar. Tud. Akad. Mat. Kutato Int. Kozl 8, 85–108 (1963)

    MATH  Google Scholar 

  31. Zhang, J.: Dual scaling between comparison and reference stimuli in multidimensional psychological space. J. Math. Psychol. 48, 409–424 (2004)

    Article  MATH  Google Scholar 

  32. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)

    MATH  MathSciNet  Google Scholar 

  33. Amari, S.: Differential geometry derived from divergence functions: information geometry approach. In: Deza, M., Petitjean, M., Markov K. (eds.) Abstracts of the International Conference “Mathematics of distances and applications”, Varna, Bulgaria, 2–5 July 2012. http://www.foibg.com/ibs_isc/ibs-25/ibs-25-f.pdf

  34. Indow, T.: An approach to geometry of visual space with no a priori mapping functions: multidimensional mapping according to Riemannian metrics. J. Math. Psychol. 26, 204–236 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  35. Indow, T.: A critical review of Luneburg’s model with regard to global structure of visual space. Psychol. Rev. 96, 430–453 (1991)

    Article  Google Scholar 

  36. Cheng, X., Shen, Z., Zhou, Y.: On a class of locally dually flat Finsler metrics. Int. J. Math. 21, 1531–1543 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Sato, Y.: An analysis of sociometric data by MDS. In: Matusita, K. (ed.) Statistical Theory and Data Analysis II, pp. 385–396. North-Holland, Amsterdam (1988)

  38. Brachat, J., Comon, P., Elias, T.: Symmetric tensor decomposition. Linear Algebra Appl. 433, 1851–1872 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  39. Comon, P., Golub, G., Lim, L.-H., Mourrain, B.: Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 30, 1254–1279 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author greatly appreciates the valuable comments of the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuya Kumagai.

Appendices

Appendix A: Additional examples of numerical calculation

In this appendix, additional dissimilarity data are numerically analyzed according to Sect. 6.

First the following circulant dissimilarity matrix is analyzed. Table 2 shows the result.

$$\begin{aligned} D= \left( \begin{array}{l@{\quad }l@{\quad }l} 0 &{} 0.10 &{} 0.12 \\ 0.12 &{} 0 &{} 0.10 \\ 0.10 &{} 0.12 &{} 0 \end{array} \right) \end{aligned}$$
(39)
Table 2 Result of the numerical calculation in the case of dissimilarity (39)

Next the following non-circulant dissimilarity matrix is analyzed. Table 3 shows the result.

$$\begin{aligned} D= \left( \begin{array}{l@{\quad }l@{\quad }l} 0 &{} 0.10 &{} 0.10 \\ 0.12 &{} 0 &{} 0.10 \\ 0.12 &{} 0.12 &{} 0 \end{array} \right) \end{aligned}$$
(40)
Table 3 Result of the numerical calculation in the case of dissimilarity (40)

Appendix B: An example of graphical representation

In addition to the decomposition of Riemannian metric

$$\begin{aligned} \tilde{g}_n^{ij} / 2 = \sum _{l=1}^q \mu _l u^i_l u^j_l \end{aligned}$$
(41)

through common eigenvalue decomposition, let us consider a symmetric tensor decomposition [38, 39]

$$\begin{aligned} - T_n^{ijk} / 12 = \sum _{l=1}^r \xi _l w^i_l w^j_l w^k_l \end{aligned}$$
(42)

where \( \xi _1 \ge \cdots \ge \xi _r > 0\), \(\sum _{l=1}^r (w_l^i)^2 = 1\). Then the Eq. (30) is written as

$$\begin{aligned} d_{\iota \kappa } = \sum _{l=1}^q (x_{\iota l} - x_{\kappa l})^2 + \sum _{l=1}^r (y_{\iota l} - y_{\kappa l})^3 \end{aligned}$$
(43)

where \(x_{\iota l} = \sqrt{\mu _l} u^i_l \eta _{i\iota }, \ y_{\iota l} = \root 3 \of {\xi _l} w^i_l \eta _{i\iota }\).

The first term in the Eq. (43), the symmetric part of \(d_{\iota \kappa }\), corresponds to the squared distance in classical MDS. The calculation of coordinates \(x_{\iota l}\) and their graphical representation are the same as in classical MDS.

The remaining is the treatment of the second term in the Eq. (43), the antisymmetric part of \(d_{\iota \kappa }\). In addition to \(x_{\iota l}\), \(y_{\iota l}\) stands for the coordinate of the object \(\iota \) in the \(l\)-th dimension. Here, as an example, a two-dimensional representation is presented. Supposing that the coordinate of the object \(n\) be zero, the antisymmetric part of \(d_{\iota n}\) is written for each \(\iota \) as follows:

$$\begin{aligned} ( d_{\iota n} - d_{n \iota } )/2 = y_{\iota 1}^3 + y_{\iota 2}^3. \end{aligned}$$
(44)

This is rewritten for graphical representation as

$$\begin{aligned} ( d_{\iota n} - d_{n \iota } )/2 = s_{\iota } (s_\iota ^2 + t_\iota ^2) /4 \end{aligned}$$
(45)

where \(s_\iota = y_{\iota 1} + y_{\iota 2}, \ t_\iota = \sqrt{3} (y_{\iota 1} - y_{\iota 2})\). Thus we can represent the antisymmetric parts by plotting \((s_\iota , \ t_\iota )\) in a plane. For each object \(\iota \), the antisymmetric part of \(d_{\iota n}\) is represented as a quarter of the product of the value of \(s_\iota \) and the squared distance between \(\iota \) and \(n\).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumagai, A. Multidimensional scaling in dually flat spaces. Japan J. Indust. Appl. Math. 32, 51–63 (2015). https://doi.org/10.1007/s13160-014-0164-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-014-0164-2

Keywords

Mathematics Subject Classification

Navigation