Skip to main content
Log in

Dynamical behavior of a delay differential equation system on toxin producing phytoplankton and zooplankton interaction

  • Original Paper
  • Area 1
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a toxin producing phytoplankton–zooplankton system with the delay is investigated. Firstly, the nonnegativity and boundedness of solutions are given. Then the local and global asymptotic stabilities of the boundary equilibrium are investigated, and the existence of local Hopf bifurcations is established as the delay crosses a threshold value at the positive equilibrium. Furthermore, there exists at least one positive periodic solution as the delay varies in some regions by using the global Hopf bifurcation result of Wu for functional differential equations. In addition, the impacts of the toxic substances are also investigated. At last, an explicit algorithm is derived for the stability and direction of the bifurcating periodic solution by using center manifold theory and normal form method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Duinker, J., Wefer, G.: Das \(CO_2\)-problem und die rolle des ozeans. Naturwissenschaften 81, 237–242 (1994)

    Article  Google Scholar 

  2. Smayda, T.: What is a bloom? A commentary. Limnol. Oceonogr. 42, 1132–1336 (1997)

    Article  Google Scholar 

  3. Anderson D.: Toxic algae blooms and red tides: a global perspective. Red tides: Environmental Science and Toxicology, 11–16 (1989)

  4. Hallegraeff, G.: A review of harmful algae blooms and the apparent global increase. Phycologia 15, 79–99 (1993)

    Article  Google Scholar 

  5. Mukhopadhyay, B., Bhattacharyya, R.: Role of gestation delay in a planktonCfish model under stochastic fluctuations. Math. Biosci. 215, 26–34 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Stoermer, E., Smol, J.: The Diatoms. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  7. Rehim, M., Imran, M.: Dynamical analysis of a delay model of phytoplankton–zooplankton interaction. Appl. Math. Model. 36, 638–647 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Wang, Y., Jiang, W., Wang, H.: stability and global Hopf bifurcation in toxic phytoplankton–zooplankton model with delay and seletive harvesting. Nonlinear Dyn. 73, 881–896 (2013)

    Article  MATH  Google Scholar 

  9. Levin, S., Segel, L.: Hypothesis for the origin plankton patchiness. Nature 259, 659–659 (1976)

    Article  Google Scholar 

  10. Uye, S.: Impact of copepod grazing on the red tide flagellate chattonella antiqua. Mar. Biol. 92, 35–43 (1986)

    Article  Google Scholar 

  11. Upadhyay, R., Chattopadhyay, J.: Chaos to order: role of toxin producing phytoplankton in aquatic systems. Nonlinear Anal. Model. Control 10, 383–396 (2005)

    MATH  MathSciNet  Google Scholar 

  12. Jang, S., Baglama, J., Rick, J.: Nutrient-phytoplankton–zooplankton models with a toxin. Math. Comput. Model. 43, 105–118 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Saha, T., Bandyopadhyay, M.: Dynamical analysis of toxin producing phytoplankton–zooplankton interactions. Nonlinear Anal. Real World Appl. 10, 314–332 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Buskey, E., Hyatt, C.: Effects of the Texas (USA)brown tide alga on planktonic grazers. Mar. Ecol. Prog. Ser. 126, 285–292 (1995)

    Article  Google Scholar 

  15. Hansen, F.: Trophic interactions between zooplankton and phaeocystis cf. globosa. Helgol. Meeresunters. 49, 283–293 (1995)

    Article  Google Scholar 

  16. Chattopadhayay, J., Sarkar, R., Mandal, S.: Toxcin-producing plankton may act as a biological control for planktonic blooms-field study and mathematical modeling. J. Theor. Biol. 215, 333–344 (2002)

    Article  Google Scholar 

  17. Dhar, J., Sharma, A., Tegar, S.: The role of delay in digestion of plankton by fish population: a fishery model. J. Nonlinear Sci. Appl. 1, 13–19 (2008)

    MATH  MathSciNet  Google Scholar 

  18. Chattopadhyay, J., Sarkar, R., El Abdllaoui, A.: A delay differential equation model on harmful algal blooms in the presence of toxic substances. IMA J. Math. Appl. Med. Biol. 19, 137–161 (2002)

    Article  MATH  Google Scholar 

  19. Tang, Y., Zhou, L.: Great time delay in a system with material cycling and delayed biomass growth. IMA J. Appl. Math. 70, 191–200 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tang, Y., Zhou, L.: Stability switch and Hopf bifurcation for a diffusive prey-predator system with delay. J. Math. Anal. Appl. 334, 1290–1307 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Saha, T., Bandyopadhyay, M.: Dynamical analysis of toxin producing phytoplankton-zooplankton interactions. Nonlinear Anal. Real World Appl. 10, 314–332 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hassard, B., Kazarinoff, N., Wan, Y.: Theory and Application of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  23. Hale, J., Lunel, S.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  24. Lakshmikantham, V., Leela, S.: Differential and Integral Inequalities (Theory and Application): Ordinary Differential Equations. I. Academic Press, New York (1969)

    Google Scholar 

  25. Beretta, E., Kuang, Y.: Geometric, stability switch criteria in delay differential systems with delay dependent parameters. SIAM J. Math. Anal 33, 1144–1165 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Faria, T., Magalhaes, L.: Normal form for retarded functional differential equations and applications to Takens-Bogdanov singularity. J. Differ. Equ. 122, 201–224 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Qu, Y., Wei, J., Ruan, S.: Stability and bifurcation analysis in hematopoietic stem cell dynamics with multiple delays. Physica D 239, 2011–2024 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wu, J.: Symmetric functional differential equations and neural networks with memory. Trans. Am. Math. Soc. 35, 4799–4838 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to anonymous referee for careful reading of the manuscript and making useful comments on the revision of the paper, and also thank Prof. Yasuhiro Takeuchi of Shizuoka University for very helpful suggestions and comments, which helped improve the presentation of the paper. The research was supported by National Natural Science Foundation of China (No. 11471034), Scientific Research Fund of North China Institute of Astronautic Engineering (No. YY-2013-01) and the innovation team project of North China Institute of Astronautic Engineering (No. XJTD-201417).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanbiao Ma.

Appendix: Property of Hopf bifurcation

Appendix: Property of Hopf bifurcation

In this section, based on numerical evaluation of Hopf bifurcations [22], it gives the computing process of the direction of Hopf bifurcations and stability of the bifurcating periodic solutions from \(E^*\) under the conditions of Theorem 3.7 (ii). Let \(\omega ^0=\omega (\tau ^0)\), \(\tau =\tau ^0+\mu \), then \(\mu =0\) is a Hopf bifurcation value of the system (1.5). Rewrite (3.10) as

$$\begin{aligned} \begin{pmatrix} \dot{x}(t)\\ \;\\ \dot{y}(t) \end{pmatrix} = B_1 \begin{pmatrix} x(t)\\ \;\\ y(t) \end{pmatrix} + B_2 \begin{pmatrix} x(t-\tau )\\ \;\\ y(t-\tau ) \end{pmatrix}+ G(x(t),y(t),x(t-\tau ),y(t-\tau ))\nonumber \\ \end{aligned}$$
(6.1)

where

$$\begin{aligned} B_{1}=\left( \begin{array}{lc} -P^*+\frac{\gamma _1P^*Z^*}{(1+\gamma _1P^*)^2} &{} \qquad -\frac{ P^*}{1+\gamma _1P^*}\\ \;\\ 0 &{}\qquad -\delta \end{array} \right) , \, \\ B_{2}=\left( \begin{array}{lc} 0 &{} \qquad 0\\ \;\\ (\frac{\beta _1 Z^*}{(1+\gamma _1P^*)^2}-\frac{\rho Z^*}{(1+\gamma _2P^*)^2})e^{-\delta \tau ^0} &{} \qquad \delta \end{array} \right) , \end{aligned}$$
$$\begin{aligned} \begin{array}{ll} G(x(t),y(t),x(t-\tau ),y(t-\tau ))=\\ \;\\ \left( \begin{array}{cc} \Big [\frac{\gamma _1 Z^*}{(1+\gamma _1P^*)^3}-1\Big ]x^2(t)-\frac{1}{2(1+\gamma _1P^*)^2}x(t)y(t)\\ -\frac{\gamma _1^2 z^*}{(1+\gamma _1P^*)^4}x^3(t) +\frac{\gamma _1}{3(1+\gamma _1P^*)^4}x^2(t)y(t)+O(4)\\ \;\\ - e^{-\delta \tau }\Big [\frac{\beta _1\gamma _1 Z^*}{(1+\gamma _1P^*)^3}-\frac{\rho \gamma _2 Z^*}{(1+\gamma _2P^*)^3}\Big ]x^2(t-\tau ) \\ \;\\ + e^{-\delta \tau }\Big [\frac{\beta _1}{2(1+\gamma _1P^*)^2}-\frac{\rho }{2(1+\gamma _2P^*)^2}\Big ]x(t-\tau )y(t-\tau )\\ \;\\ + e^{-\delta \tau }\Big [\frac{\beta _1\gamma _1^2 Z^*}{(1+\gamma _1P^*)^4}-\frac{\rho \gamma _2^2 Z^*}{(1+\gamma _2P^*)^4}\Big ]x^3(t-\tau )\\ \;\\ -e^{-\delta \tau }\Big [\frac{\beta _1\gamma _1 }{3(1+\gamma _1P^*)^4}-\frac{\rho \gamma _2 }{3(1+\gamma _2P^*)^4}\Big ]x^2(t-\tau )y(t-\tau )+O(4) \end{array} \right) , \end{array} \end{aligned}$$

and for \(\varphi \in C\), define

$$\begin{aligned} L_{\mu }(\varphi )=B_{1} \begin{pmatrix} \varphi _1(0) \\ \;\\ \varphi _2(0)\end{pmatrix} +B_{2} \begin{pmatrix} \varphi _1(-\tau ) \\ \;\\ \varphi _2(-\tau ) \end{pmatrix}, \end{aligned}$$

where \(C=C([-\tau ,0],R_+^2)\) with the norm \(|\varphi |=\sup _{-\tau \le \theta \le 0}|\varphi (\theta )|\) is the phase space. Clearly, \(L_\mu \) is a linear continuous operator from \(C\) to \(R_+^2\). By the Riesz representation theorem, there exists a matrix whose components are bounded variation functions \(\eta (\theta ,\mu )\) in \(\theta \in [-\tau ,0]\) such that

$$\begin{aligned} L_{\mu }\varphi =\int _{-\tau }^0 d\eta (\theta ,\mu )\varphi (\theta ), \end{aligned}$$
(6.2)

where \(\varphi \in C.\) In fact, it may choose

$$\begin{aligned} \eta (\theta ,\mu )=B_{1} \delta (\theta )-B_{2} \delta (\theta +\tau ), \end{aligned}$$

where

$$\begin{aligned} \delta (\theta )={\left\{ \begin{array}{ll}1, &{} \theta =0 \\ 0, &{} \theta \ne 0. \end{array}\right. } \end{aligned}$$

For \(\varphi \in C^1=C([0,\tau ],(R_+^2)^{*})\) , define

$$\begin{aligned} A(\mu )\varphi =\left\{ \begin{array}{ll} \dot{\varphi }(\theta ), &{}\theta \in [-\tau ,0)\\ \int _{-\tau }^{0}d\eta (s,\mu )\varphi (s),&{}\theta =0, \end{array} \right. \end{aligned}$$

and

$$\begin{aligned} R(\mu )\varphi =\left\{ \begin{array}{ll} 0 , &{}\theta \in [-\tau ,0)\\ F(\mu ,\varphi ), &{}\theta =0, \end{array} \right. \end{aligned}$$

where

$$\begin{aligned} F(\mu ,\varphi )= \begin{pmatrix} \Big [\frac{\gamma _1 Z^{*}}{(1+\gamma _{1P}^{*})^{3}}-1\Big ]\varphi _1^2(0)-\frac{1}{2(1+\gamma _{1P}^{*})^{2}}\varphi _1(0)\varphi _2(0)\\ -\frac{\gamma _{1}^{2} z^{*}}{(1+\gamma _{1P}^{*})^{4}}\varphi _{1}^{3(0)} +\frac{\gamma _1}{3(1+\gamma _{1P}^{*})^{4}}\varphi _{1}^{2(0)}\varphi _{2(0)}+O(4)\\ - e^{-\delta \tau }\Big [\frac{\beta _{1}\gamma _{1} Z^{*}}{(1+\gamma _{1P}^{*})^{3}}-\frac{\rho \gamma _{2} Z^{*}}{(1+\gamma _{2P}^{*})^{3}}\Big ]\varphi _{1}^{2(-\tau )} \\ +e^{-\delta \tau }\Big [\frac{\beta _1}{2(1+\gamma _1P^*)^2}-\frac{\rho }{2(1+\gamma _2P^*)^2}\Big ]\varphi _1(-\tau )\varphi _2(-\tau )\\ + e^{-\delta \tau }\Big [\frac{\beta _1\gamma _1^2 Z^*}{(1+\gamma _1P^*)^4}-\frac{\rho \gamma _2^2 Z^*}{(1+\gamma _2P^*)^4}\Big ]\varphi _1^3(-\tau )\\ -e^{-\delta \tau }\Big [\frac{\beta _1\gamma _1 }{3(1+\gamma _1P^*)^4}-\frac{\rho \gamma _2}{3(1+\gamma _2P^*)^4}\Big ]\varphi _1^2(-\tau )\varphi _2(-\tau )+O(4) \end{pmatrix} \end{aligned}$$

is the nonlinear term of the right side of the system (6.1).

Let \(u=(x,y)^T ,\) then the system (6.1) can be rewritten as

$$\begin{aligned} \dot{u_t}=A(\mu )u_t+R(\mu )u_t. \end{aligned}$$
(6.3)

For \(\psi \in C^1\) , define

$$\begin{aligned} A^*\psi (s)=\left\{ \begin{array}{ll}-\dot{\psi }(s), &{}s\in (0,\tau ]\\ \int _{-\tau }^0d\eta ^T(t,\tau ^*)\psi (-t),&{}s=0, \end{array} \right. \end{aligned}$$

and a bilinear form

$$\begin{aligned} \langle \psi ,\varphi \rangle =\bar{\psi }(0)\varphi (0)- \int _{-\tau }^0\int _0^{\theta }\bar{\psi }(\xi -\theta ) d\eta (\theta )\varphi (\xi )d\xi , \end{aligned}$$

where \(\eta (\theta )=\eta (\theta ,\tau ^0).\) Then \(A^*\) and \(A\) are adjoint operators. In addition, from Sect. 2, we know that \(\pm i\omega ^0\) are the eigenvalues of \(A(\tau ^0)\). Thus they are also the eigenvalues of \(A^*\).

By direct computation, it can obtain that \( q(\theta )=\Big (1,\,q_2\Big )e^{i\omega ^0\theta } \) is the eigenvector of \(A(0)\) corresponding to \(i\omega ^0 \); and \( q^*(s)=\bar{D}\Big (1,\,q_2^*\Big )^Te^{i\omega ^0 s} \)

is the eigenvector \( A^* \) corresponding to \(-i\omega ^0\), where

$$\begin{aligned} \begin{array}{ll} q_2=-\frac{(i\omega ^0+P^*)(1+\gamma _1P^*)^2-\gamma _1P^*Z^*}{ P^*(1+\gamma _1P^*)},\quad q_2^*=\frac{ P^*}{(1+\gamma _1P^*)(i\omega ^0-\delta +\delta e^{i\omega ^0\tau ^0})}. \end{array} \end{aligned}$$

Moreover,

$$\begin{aligned} \langle q^*(s), q(\theta ) \rangle = 1 ,\quad \langle q^*(s),\bar{q} (\theta ) \rangle = 0 , \end{aligned}$$

where

$$\begin{aligned} \begin{array}{ll} D=\Big \{1+q_2\bar{q}_2^*\Big [1+\tau ^0\delta e^{-i\omega ^0\tau ^0}\Big ]+\tau ^0 e^{-(\delta +i\omega ^0)\tau ^0}\bar{q}_2^*\Big [\frac{\beta _1Z^*}{(1+\gamma _1P^*)^2}-\frac{\rho Z^*}{(1+\gamma _2P^*)^2}\Big ]\Big \}^{-1}. \end{array} \end{aligned}$$

Using the same notations as in [22], it can obtain

$$\begin{aligned} g_{20}\!&= \!2D\Big \{v_1-1-v_3q_2+\bar{q}_2^*e^{-(\delta +2i\omega ^0)\tau ^0}\Big [(\beta _1 v_3-v_4)q_2-\beta _1 v_1+v_2\Big ]\Big \},\\ g_{11}\!&= \!D\Big \{2( v_1\!-\!1)\!-\! v_3(q_2 \!+\! \bar{q}_2)\!+\!\bar{q}_2^*e^{-\delta \tau ^0}\Big [(\beta _1v_3\!-\!v_4)(q_2\!+\!\bar{q}_2)\!-\!2(v_1\!-\!v_2)\Big ]\Big \},\\ g_{02}\!&= \!2D\Big \{ v_1-1- v_3\bar{q}_2+\bar{q}_2^*e^{-(\delta -2i\omega ^0)\tau ^0}\Big [(\beta _1 v_3-v_4)\bar{q}_2-\beta _1 v_1+v_2\Big ]\Big \},\\ g_{21}\!&= \!2D\Big \{( v_1\!-\!1)\Big [2W_{11}^{(1)}(0)\!+\!W_{20}^{(1)}(0)\Big ]- v_3\Big [W_{11}^{(2)}(0)\!+\!\frac{1}{2}W_{20}^{(2)}(0) +\frac{1}{2}W_{20}^{(1)}(0)\bar{q}_2\\&+W_{11}^{(1)}(0)q_2\Big ]\!-\!3 v_5\!+\!\beta v_7(\bar{q}_2\!+\!2q_2) \!+\!\bar{q}_2^*\Big [e^{-\delta \tau ^0}(\beta _1v_3\!-\!v_4)(e^{-i\omega ^0\tau ^0}W_{11}^{(2)}(-\tau ^0)\\&+\frac{1}{2}e^{i\omega ^0\tau ^0}W_{20}^{(2)}(-\tau ^0) +\frac{1}{2}e^{i\omega ^0\tau ^0}W_{20}^{(1)}(-\tau ^0)\bar{q}_2 +e^{-i\omega ^0\tau ^0}W_{11}^{(1)}(-\tau ^0)q_2)\\&-\,e^{-\delta \tau ^0}(\beta _1v_1-v_2)(2e^{-i\omega ^0\tau ^0}W_{11}^{(1)}(-\tau ^0) +e^{i\omega ^0\tau ^0}W_{20}^{(1)}(-\tau ^0))\\&+\,3e^{-(\delta +i\omega ^0)\tau ^0}(\beta _1v_5-v_6) -e^{-(\delta +i\omega ^0)\tau ^0}(\beta _1v_7-v_8)(\bar{q}_2+2q_2)\Big ]\Big \}, \end{aligned}$$

where

$$\begin{aligned} \begin{array}{c} v_1=\frac{\gamma _1Z^*}{(1+\gamma _1P^*)^3}, v_2=\frac{\rho \gamma _2 Z^*}{(1+\gamma _2P^*)^3},v_3=\frac{1}{2(1+\gamma _1P^*)^2}, v_4=\frac{\rho }{2(1+\gamma _2P^*)^2}, \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{c} v_5=\frac{\gamma _1^2Z^*}{(1+\gamma _1P^*)^4}, v_6=\frac{\rho \gamma _2^2Z^*}{(1+\gamma _2P^*)^4}, v_7=\frac{\gamma _1}{3(1+\gamma _1P^*)^4}, v_8=\frac{\rho \gamma _2}{3(1+\gamma _2P^*)^4}, \end{array} \end{aligned}$$

and

$$\begin{aligned} \begin{array}{c} W_{20}(\theta )=\frac{ig_{20}}{\omega ^0}q(0)e^{i\omega ^0\theta } +\frac{i\bar{g}_{20}}{3\omega ^0}\bar{q}(0)e^{-i\omega ^0\theta } +E_1e^{2i\omega ^0\theta }, \end{array} \end{aligned}$$

and

$$\begin{aligned} \begin{array}{c} W_{11}(\theta )=\frac{-ig_{11}}{\omega ^0}q(0)e^{i\omega ^0\theta } +\frac{i\bar{g}_{11}}{\omega ^0}\bar{q}(0)e^{-i\omega ^0\theta } +E_2, \end{array} \end{aligned}$$

with

$$\begin{aligned} E_1&= \left( \begin{array}{lc} 2i\omega ^0+P^*-\frac{\gamma _1P^*Z^*}{(1+\gamma _1P^*)^2}&{} \frac{ P^*}{1+\gamma P^*}\\ \;\\ -\Big [\frac{\beta _1Z^*}{(1+\gamma _1P^*)^2}-\frac{\rho Z^*}{(1+\gamma _2 P^*)^2}\Big ]e^{-(\delta +2i\omega ^0)\tau ^0} &{}\, 2i\omega ^0+\delta -\delta e^{-(\delta +2i\omega ^0)\tau ^0} \end{array} \right) ^{-1}\\&\quad \times \left( \begin{array}{c} v_1-1-\beta v_3 q_2\\ \;\\ \Big [(\beta _1 v_3-v_4)q_2-\beta _1 v_1+v_2\Big ] e^{-(\delta +2i\omega ^0)\tau ^0} \end{array} \right) , \end{aligned}$$

and

$$\begin{aligned} E_2&= \left( \begin{array}{lc} -P^*+\frac{\gamma _1P^*Z^*}{(1+\gamma _1 P^*)^2} &{} -\frac{ P^*}{1+\gamma _1P^*}\\ \;\\ \Big [\frac{\beta _1Z^*}{(1+\gamma _1P^*)^2}-\frac{\rho Z^*}{(1+\gamma _2 P^*)^2}\Big ] e^{-\delta \tau ^0}&{} 0 \end{array} \right) ^{-1}\\&\quad \times \left( \begin{array}{l} 2(1-v_1)+ v_3(q_2+\bar{q}_2)\\ \;\\ e^{-\delta \tau ^0}\Big [2(\beta _1v_1-v_2)-(\beta _1v_3-v_4)(q_2+\bar{q}_2)\Big ] \end{array} \right) . \end{aligned}$$

Then \(g_{21}\) can be expressed by the parameters. Based on the above analysis, we can see that each \(g_{ij}\) can be determined by the parameters. Thus it can compute the following quantities:

$$\begin{aligned} \begin{array}{ll} C_1(0)= \frac{i}{2\omega ^0}(g_{20}g_{11}-2|g_{11}|^2-\frac{1}{3}|g_{02}|^2) +\frac{g_{21}}{2},\\ \;\\ \mu _2 =-\frac{\text {Re}\{C_1(0)\}}{\text {Re}\lambda '(0)},T_2=-\frac{\text {Im}\{C_1(0)\}+\mu _2\text {Im}\lambda '(0)}{\omega ^0},\\ \;\\ \beta _2=2\text {Re}\{C_1(0)\}. \end{array} \end{aligned}$$

Hence it has the following theorem.

Theorem 6.1

\(\mu _2\) determines the directions of the Hopf bifurcation: if \(\mu _2>0(<0)\), the Hopf bifurcation is supercritical (subcritical); \(\beta _2\) determines the stability of the bifurcation periodic solutions: the bifurcation periodic solutions are orbitally stable (unstable) if \(\beta _2<0(>0)\); and \(T_2\) determines the period of the bifurcating periodic solutions: the period increase (decrease) if \(T_2>0(<0)\).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Ma, W. & Li, D. Dynamical behavior of a delay differential equation system on toxin producing phytoplankton and zooplankton interaction. Japan J. Indust. Appl. Math. 31, 583–609 (2014). https://doi.org/10.1007/s13160-014-0152-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-014-0152-6

Keywords

Mathematics Subject Classification

Navigation