Skip to main content
Log in

Hydroassets portfolio management for intraday electricity trading from a discrete time stochastic optimization perspective

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Hydro storage system optimization is becoming one of the most challenging tasks in energy finance. While currently the state-of-the-art of the commercial software in the industry implements mainly linear models, we would like to introduce risk aversion and a generic utility function. At the same time, we aim to develop and implement a computational efficient algorithm, which is not affected by the curse of dimensionality and does not utilize subjective heuristics to prevent it. For the short term power market we propose a simultaneous solution for both dispatch and bidding problems. Following the Blomvall and Lindberg (Eur J Oper Res 143(2):452–461, 2002) interior point model, we set up a stochastic multiperiod optimization procedure by means of a “bushy”recombining tree that provides fast computational results. Inequality constraints are packed into the objective function by the logarithmic barrier approach and the utility function is approximated by its second order Taylor polynomial. The optimal solution for the original problem is obtained as a diagonal sequence where the first diagonal dimension is the parameter controlling the logarithmic penalty and the second one is the parameter for the Newton step in the construction of the approximated solution. Optimal intraday electricity trading and water values for hydroassets as shadow prices are computed. The algorithm is implemented in Mathematica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abgottspon, H.: Hydro power planning: multi-horizon modeling and its applications. Diss. ETH No. 22729 (2015)

  2. Amini, M.H., Boroojeni, K.G., Iyengar, S.S., Pardalos, P.M., Rahmani, M.: An economic dispatch algorithm for congestion management of smart power networks: an oblivious routing approach. Energy Syst. 8, 643667 (2017)

    Google Scholar 

  3. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9(3), 203–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Askew, A.J.: Optimum reservoir operating policies and the imposition of a reliability constraint. Water Resour. Res. 10(1), 51–56 (1974)

    Article  Google Scholar 

  5. Barroso, L., Rebennack, S., Steeger, G.: Optimal bidding strategies for hydro-electric producers: a literature survey. IEEE Trans. Power Syst. 29(4), 1758–1766 (2014)

    Article  Google Scholar 

  6. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  7. Bertsekas, D., Shreve, S.E.: Stochastic Optimal Control: The Discrete-Time Case. Athena Scientific, Belmont (1996)

    MATH  Google Scholar 

  8. Bertsekas, D.: Dynamic Programming and Optimal Control, Optimization and Computation Series, vol. 1. Athena Scientific, Belmont (2005)

    MATH  Google Scholar 

  9. Blomvall, J., Lindberg, P.O.: Validation of a Riccati-Based Primal Interior Point Solver for Multistage Stochastic Programming. University of Linköping, Department of Mathematics (2000)

  10. Blomvall, J., Lindberg, P.O.: A Riccati-based primal interior point solver for multistage stochastic programming. Eur. J. Oper. Res. 143(2), 452–461 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Blomvall, J., Lindberg, P.O.: A Riccati-based primal interior point solver for multistage stochastic programming-extensions. Optim. Methods Softw. 17, 383–407 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Blomvall, J., Lindberg, P.O.: A multistage stochastic programming algorithm suitable for parallel computing. J. Parallel Comput. Spec. Issue Parallel Comput. Numer. Optim 29(4), 431–445 (2003)

    MathSciNet  Google Scholar 

  13. Blomvall, J., Lindberg, P.O.: Back-testing the performance of an actively managed option portfolio at the Swedish stock market, 1990–1999. J. Econ. Dyn. Control 27(6), 1099–1112 (2003)

    Article  MATH  Google Scholar 

  14. Costa, J. D., Shapiro, A., Soares, M., Tekaya, W.: Multistage energy planning—risk neutral and risk averse approaches. In: XII SEPOPE: symposium of specialists in electric operational and expansion planning (2012)

  15. Densing, M.: Hydro-electric power plant dispatch-planning: multi-stage stochastic programming with time-consistent constraints on risk. Diss. ETH No. 17244 (2007)

  16. Dueholm, L., Ravn, H.F.: Modelling of short term electricity prices, hydro inflow and water values. In: Proceedings of the 6th IAEE European conference, Zurich (2004)

  17. Egerer, J., Scharff, R., Söder, L.: A description of the operative decision-making process of a power generating company on the Nordic electricity market. Energy Syst. 5(2), 349–369 (2014)

    Article  Google Scholar 

  18. Gjelsvik, A., Grundt, A., Mo, B.: Integrated risk management of hydro power scheduling and contract management. IEEE Trans. Power Syst. 16(2), 216–221 (2001)

    Article  Google Scholar 

  19. Farinelli, S., Vanini, P.: Joint interest rate risk management of balance sheet and hedge portfolio. Icfai Univ. J. Financ. Risk Manag. V(3), 28–56 (2008)

  20. Farinelli, S., Tibiletti, L.: Portfolio management and stochastic optimization in discrete time: an application to intraday electricity trading and water values for hydroassets. In: Operations research proceedings 2015 selected papers of the international conference of the German, Austrian and Swiss operations research societies (GOR, ÖGOR, SVOR/ASRO), University of Vienna, Austria, September 1–4, 2015, Dörner, K.F., Ljubic, I., Pflug, G., Tragler, G. (Eds.), Springer Verlag. ISBN:978-3-319-42901-4. Forthcoming (2017)

  21. Fleten, S.-E., Wallace, S.W.: Stochastic programming models in energy. In: Ruszczynski, A., Shapiro, A. (eds.) Stochastic Programming, Handbooks in Operations Research and Management Science, vol. 10, pp. 637–677. Elsevier, Amsterdam (2003)

    Google Scholar 

  22. Fleten, S.-E., Kristoffersen, T.K.: Stochastic programming for optimizing bidding strategies of a Nordic hydropower producer. EJOR 181(2), 916–928 (2007)

    Article  MATH  Google Scholar 

  23. Fleten, S.-E., Kristoffersen, T.K.: Short-term hydropower production planning by stochastic programming. Comput. Oper. Res. 35(8), 2656–2671 (2008)

    Article  MATH  Google Scholar 

  24. Fleten, S.-E., Kristoffersen, T.K.: Stochastic programming models for short-term power generation scheduling and bidding. In: Bjørndal, E., Bjørndal, M., Pardalos, P., Rönnqvist, M. (eds.) Energy, Natural Resources and Environmental Economics, Energy Systems. Springer, Berlin (2010)

    Google Scholar 

  25. Frances, D., Kwon, R.H.: Optimization-based bidding in day-ahead electricity auction markets: a review of models for power producers. In: Sorokin, A., Rebennack, S., Pardalos, P., Iliadis, N., Pereira, M. (eds.) Handbook of Networks in Power Systems I. Energy Systems. Springer, Berlin (2012)

    Google Scholar 

  26. García-González, J., Mateo, A., Parrilla, E.: Risk-averse profit-Based optimal scheduling of a hydro-chain in the day-ahead Electr. Market. EJOR 181(3), 1354–1369 (2007)

    Article  MATH  Google Scholar 

  27. Horsley, A., Wrobel, A.: Profit-maximizing operation and valuation of hydroelectric plant: a new solution to the Koopmans problem. J. Econ. Dyn. Control 31(3), 938–970 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Labadie, J.W.: Optimal operation of multireservoir systems: state-of-the-art review. J. Water Resour. Plann. Manag. 130(2), 93–111 (2004)

    Article  Google Scholar 

  29. Larsson, Y., Stage, S.: Incremental cost of water power. Trans AIEE 80(3), 361–365 (1961)

  30. Li, G., Shi, J., Qu, X.: Modeling methods for GENCO bidding strategy optimization in the liberalized electricity spot market—a state of the art review. Energy 36(8), 4686–4700 (2011)

    Article  Google Scholar 

  31. Löhndorf, N., Minner, S., Wozabal, D.: Optimizing trading decisions for hydro storage systems using approximate dual dynamic programming. Oper. Res. 61(4), 810–823 (2013)

  32. Löhndorf, N., Minner, S.: Optimal day-ahead trading and storage of renewable energies—an approximate dynamic programming approach. Energy Syst. 1, 61–77 (2010)

    Article  Google Scholar 

  33. Loucks, D.P., Stedinger, J.R., Sule, B.F.: Stochastic dynamic programming models for reservoir operation optimization. Water Resour. Res. 20(11), 1499–1505 (1984)

    Article  Google Scholar 

  34. Luenberger, D.G.: Optimization by Vector Space Methods. Wiley Professional Paperback Series. Wiley, New York (1997)

    Google Scholar 

  35. Minoux, M.: Mathematical Programming: Theory and Algorithms. Wiley, New York (1986)

    MATH  Google Scholar 

  36. Paraschiv, F., Kovacevic, R.M., Schürle, M.: Optimization of hydro storage systems and indifference pricing of power contracts. In: Presentation at energy finance conference 2015. Cass Business School, London (2015)

  37. Pflug, G., Pichler, A.: Multistage Stochastic Optimization Springer Series in Operations Research and Financial Engineering. Springer, Berlin (2014)

    Google Scholar 

  38. Powell, W.B.: Approximate Dynamic Programming. Wiley, New york (2011)

    Book  MATH  Google Scholar 

  39. Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics and Physics. Princeton University Press, Princeton (1996)

    Google Scholar 

  40. Ruszczyński, A.: Risk-averse dynamic programming for Markov decision processes. Math. Programm. 125(2), 235–261 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Riedel, F.: Dynamic coherent risk measures. Stoch. Process. Appl. 112(2), 185–200 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Römisch, W.: Scenario reduction techniques in stochastic programming. In: Watanabe, O., Zeugmann, T. (eds.) Stochastic Algorithms: Foundations and Applications, Lecture Notes in Computer Science, vol. 5792, pp. 1–14. Springer, Berlin (2009)

    Chapter  Google Scholar 

  43. Rossman, L.A.: Reliability-constrained dynamic programing and randomized release rules in reservoir management. Water Resour. Res. 13(2), 247–255 (1977)

    Article  Google Scholar 

  44. Sniedovich, M.: Reliability-constrained reservoir control problems: 1. Methodological issues. Water Resour. Res. 15(6), 1574–1582 (1979)

    Article  Google Scholar 

  45. Yakowitz, S.: Dynamic programming applications in water resources. Water Resour. Res. 18(4), 673–696 (1982)

    Article  Google Scholar 

  46. Yamin, H.: Review on methods of generation scheduling in electric power systems. Electr. Power Syst. Res. 69(2–3), 227–248 (2004)

    Article  Google Scholar 

  47. Young, G.: Finding reservoir operating rules. J. Hydraul. Div. Am. Soc. Civ. Eng. 93(6), 297–321 (1967)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Sai Anand, Rémi Janner, Nick Schäfer and Hubert Abgottspon for their hints and their very valuable feedbacks. The usual caveat applies.

Disclaimer The opinions expressed in this document are our own and do not necessarily reflect those of Core Dynamics GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Tibiletti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farinelli, S., Tibiletti, L. Hydroassets portfolio management for intraday electricity trading from a discrete time stochastic optimization perspective. Energy Syst 10, 21–57 (2019). https://doi.org/10.1007/s12667-017-0258-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-017-0258-4

Keywords

Navigation