Skip to main content

Advertisement

Log in

Modeling and control design of a stand alone wind energy conversion system based on functional model predictive control

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

This paper investigates the application of the model predictive control (MPC) approach to control the voltage and frequency of a stand alone wind generation system. This scheme consists of a wind turbine which drives an induction generator feeding an isolated load. A static VAR compensator is connected at the induction generator terminals to regulate the load voltage. The rotor speed, and thereby the load frequency are controlled via adjusting the mechanical power input using the blade pitch-angle. The MPC is used to calculate the optimal control actions including system constraints. To alleviate computational effort and to reduce numerical problems, particularly in large prediction horizon, an exponentially weighted functional model predictive control (FMPC) is employed.

Digital simulations have been carried out in order to validate the effectiveness of the proposed scheme. The proposed controller has been tested through step changes in the wind speed and the load impedance. Simulation results show that adequate performance of the proposed wind energy scheme has been achieved. Moreover, this scheme is robust against the parameters variation and eliminates the influence of modeling and measurement errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

v ds ,v qs :

d-q stator voltages

i ds ,i qs :

d-q stator currents

i dr ,i qr :

d-q rotor currents

R s ,R r :

stator and rotor resistances per phase

L s ,L r ,L m :

stator, rotor and magnetizing inductances

C o :

self excitation capacitance per phase

ω s :

angular stator frequency of the induction generator

ω m :

angular rotor speed (electrical rads/s) of the induction generator

ω t :

angular rotor speed of the turbine

J :

moment of inertia

f :

friction coefficient

p :

differential operator d/dt

L o :

physical inductance of the reactor in the SVAR

α tcr :

firing angle of the SVAR

β :

turbine blade pitch angle

i dL ,i qL :

d-q load current

\(i_{dL_{o}},i_{qL_{o}}\) :

d-q reactor current in the SVAR

λ :

turbine tip speed ratio

P :

number of pole pairs

C p :

turbine power coefficient

L eq :

equivalent inductance of the reactor of the FCTCR

v ref :

reference voltage

P ref :

reference power

v t :

generator’s terminal voltage

R L :

load resistance

L L :

load inductance

N p :

prediction horizon

N c :

control horizon

VAR:

voltage automatic regulator

MPC:

model predictive control

SEIG:

self excited induction generator

GPC:

generalized predictive control

RHC:

receding horizon control

WT:

wind turbine

IG:

induction generator

GB:

gear box

FMPC:

functional model predictive control

FCTCR:

fixed-capacitor thyristor-controlled reactor

References

  1. Chan, T.F.: Steady-state analysis of self-excited induction generators. IEEE Trans. Energy Convers. 9(2), 288–296 (1994)

    Article  Google Scholar 

  2. Chakraborty, C., Bhadra, S.N., Chattopadhyay, A.K.: Excitation requirements for stand alone three-phase induction generator. IEEE Trans. Energy Convers. 13(4), 358–365 (1998)

    Article  Google Scholar 

  3. Chan, T.F., Lai, L.L.: Steady-state analysis and performance of a stand-alone three-phase induction generator with asymmetrically connected load impedances and excitation capacitances. IEEE Trans. Energy Convers. 16(4), 91–96 (2001)

    Article  Google Scholar 

  4. Muljadi, E., Sallan, J., Sanz, M., Butterfield, C.P.: Investigation of self-excited induction generators for wind turbine applications. IEEE Trans. Energy Convers. 12 (2000)

  5. Sallan, J., Muljadi, E., Sanz, M., Butterfield, C.P.: Control of self-excited induction generators driven by wind turbines. IEEE Trans. Energy Convers. 12 (2000)

  6. Wang, L., Su, J.: Dynamic performances of an isolated self excited induction generator under various loading conditions. IEEE Trans. Energy Convers. 14(1), 93–102 (1999)

    Article  Google Scholar 

  7. Idjdarene, K., Rekioua, D., Rekioua, T., Tounzi, A.: Performance of an isolated induction generator under unbalanced loads. IEEE Trans. Energy Convers. 25(2), 303–311 (2010)

    Article  Google Scholar 

  8. Hittinger, E., Whitacre, J.F., Apt, J.: Compensating for wind variability using co-located natural gas generation and energy storage. Energy Syst. 1(4), 417–439 (2010)

    Article  Google Scholar 

  9. Apergis, N., Payne, J.E.: On the causal dynamics between renewable and non-renewable energy consumption and economic growth in developed and developing countries. Energy Syst. 2(3–4), 299–312 (2011)

    Article  Google Scholar 

  10. Shaltout, A.A., Abd el-Halim, M.A.: Solid-state control of a wind-driven self-excited induction generator. IEEE Electr. Mach. Power Syst. 23, 571–582 (1995)

    Article  Google Scholar 

  11. Hilloowala, R.M.: Control and interface of renewable energy systems, Ph.D. Thesis, The University of New Brunswick, Canada, 1992

  12. Bonert, R., Rajakaruna, S.: Self-excited induction generator with excellent voltage and frequency control. IEE Proc., Gener. Transm. Distrib. 145(1), 33–39 (1998)

    Article  Google Scholar 

  13. Marra, E.G., Pomilio, J.A.: Self-excited induction generator controlled by a VS-PWM bidirectional converter for rural applications. IEEE Trans. Ind. Appl. 35(4), 877–883 (1999)

    Article  Google Scholar 

  14. Kuo, S.C., Wang, L.: Analysis of voltage control for a self-excited induction generator using a current-controlled voltage source inverter (CC-VSI). IEE Proc., Gener. Transm. Distrib. 148(5), 431–437 (2001)

    Article  Google Scholar 

  15. Seyoum, D., Rahman, M., Grantham, C.: Terminal voltage control of a wind turbine driven isolated induction generator using stator oriented field control. In: Proc. of the IEEE Eighteenth Annual Applied Power Electronics Conference and Exposition, vol. 2, pp. 846–852, (2003)

    Chapter  Google Scholar 

  16. Zahir, B.A., Kettleborough, J.G., Smith, I.R.: A stand alone induction generator model producing a constant voltage constant frequency output. In: IEEE 4th International Conference on Emerging Technologies, vol. 1, pp. 83–86, (2008)

    Chapter  Google Scholar 

  17. Forchetti, D.G., Solsona, J.A., Garc, G.O., Valla, M.I.: A control strategy for stand-alone wound rotor induction machine. Electr. Power Syst. Res. 77, 163–169 (2007)

    Article  Google Scholar 

  18. Bjørndal, E., Bjørndal, M., Pardalos, P.M., Rönnqvist, M. (eds.): Energy, Natural Resources and Environmental Economics. Springer, Berlin (2010)

    Google Scholar 

  19. Krichen, L., Francois, B., Ouali, A.: A fuzzy logic supervisor for active and reactive power control of a fixed speed wind energy conversion system. Electr. Power Syst. Res. 78, 418–424 (2008)

    Article  Google Scholar 

  20. Hassan, A.A., Mohamed, Y.S., Kassem, A.M.: A neural voltage regulator for a wind driven self excited induction generator. In: 9th International Middle-East Power Systems Conference, MEPCON’2003, 16–18 Dec., p. 691. IEEE Press, Shebin EL-Kom (2003)

    Google Scholar 

  21. Rivera, M., Elizondo, J.L., Macías, M.E., Probst, O.M., Micheloud, O.M., Rodriguez, J., Rojas, C., Wilson, A.: Model predictive control of a doubly fed induction generator with an indirect matrix converter. In: IEEE 36th Annual Conference on Industrial Electronics Society, Nov. 2010, pp. 2959–2965 (2010)

    Chapter  Google Scholar 

  22. Soliman, M., Malik, O.P., Westwick, D.T.: Multiple model predictive control for wind turbines with doubly fed induction generators. IEEE Trans. Sustain. Energy 2(3), 215–225 (2011)

    Article  Google Scholar 

  23. Muhando, E.B., Senjyu, T., Uchida, K., Kinjo, H., Funabashi, T.: Stochastic inequality constrained closed-loop model-based predictive control of MW-class wind generating system in the electric power supply. IET Renew. Power Gener. 4(1), 23–35 (2010)

    Article  Google Scholar 

  24. Zhi, D., Xu, L., Williams, B.W.: Model-based predictive direct power control of doubly fed induction generators. IEEE Trans. Power Electron. 25(2), February (2010)

  25. Zhang, Y., Zhu, J., Hu, J.: Model predictive direct torque control for grid synchronization of doubly fed induction generator. In: 2011 IEEE International Electric Machines & Drives Conference, pp. 765–770 (2011)

    Chapter  Google Scholar 

  26. Zhang, L., Norman, R., Shepherd, W.: Long-range predictive control of current regulated PWM for induction motor drives using the synchronous reference frame. IEEE Trans. Control Syst. Technol. 5(1), 119–126 (1997)

    Article  Google Scholar 

  27. Kennel, R., Linder, A., Linke, M.: Generalized predictive control (GPC)—ready for use in drive applications. In: Proc. of the IEEE Power Electronics Specialists Conference PESC’01, pp. 1839–1844 (2001)

    Google Scholar 

  28. Linder, A., Kennel, R.: Model predictive control for electrical drives. In: Proc. of the IEEE Power Electronics Specialists Conference PESC’05, pp. 1793–1799 (2005)

    Chapter  Google Scholar 

  29. Wang, L.: Discrete model predictive control design using Laguerre functions. J. Process Control 14, 131–142 (2004)

    Article  Google Scholar 

  30. Wang, L.: Use of exponential data weighting in model predictive control design. In: Proc 40th IEEE Conf. on Decision and Control (2001)

    Google Scholar 

  31. Abdin, A., Wilson, X.: Control design and dynamic performance analysis of a wind turbine-induction generator unit. IEEE Trans. Energy Convers. 15(1), 91–96 (2000)

    Article  Google Scholar 

  32. Kassem, A.M.: Advanced control techniques for regulating the voltage and frequency of a wind driven induction generator. Ph.D. thesis, El-Minia University (2006)

  33. Maciejowski, J.M.: Predictive Control with Constraints, Pearson Education, POD (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Kassem.

Appendices

Appendix A: System parameters

Wind turbine:

Rating::

1 kw, 450 rpm (low speed side) at V w =12 m/s.

Size::

height = 4 m, equator radius = 1 m, swept area = 4 m2, ρ=1.25 kg/m2.

Induction machine:

Rating::

3-phase, 2 kw, 120 V, 10 A, 4-pole, 1740 rpm.

Parameters::

R s =0.62 Ω, R r =0.566 Ω, L s =L r =0.058174 H, L m =0.054 H, J=0.0622 kg m2, f=0.00366 Nm/rad/s.

FC-TCR::

C o =176 μF, L o =0.127 H.

Appendix B: Operating point values [29]

I qs :

7.35 A

I ds :

0.81 A

I qr :

−0.06 A

I dr :

−1.12 A

ω mo :

291 rad/sec

V ds :

118 V

I qL :

1.106 A

I dL :

0.41 A

\(I_{qL_{o}}\) :

0.57 A

\(I_{dL_{o}}\) :

0.23 A

α tcro :

146 deg

β o :

10.6 deg

Appendix C: Linearization matrix parameters

The elements a ij of the 12×12 matrix A are:

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassem, A.M. Modeling and control design of a stand alone wind energy conversion system based on functional model predictive control. Energy Syst 3, 303–323 (2012). https://doi.org/10.1007/s12667-012-0051-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-012-0051-3

Keywords

Navigation