Extraction and Identification of Biomolecules from Lignin Alkaline Hydrolysate from Coffee Husk

Abstract

Lignin has aroused great interest in the scientific and economic areas because of its aromatic and complex nature. It can be used as a raw material for obtaining aromatic aldehydes but the great potential of lignin is not satisfactorily utilized. The interest is justified by the fact that, when its structure is spun off through pre-treatment processes, it produces some phenolic compounds of important industrial interest. These are bioactive compounds that can be used to promote benefits to human health, such as reducing the incidence of degenerative diseases like cancer and diabetes, as antioxidant, ant mutagenic activities, anti allergic, anti-inflammatory and antimicrobial effects. The present work aimed to the extraction and identification by UPLC-MS of biomolecules found in alkaline lignin hydrolysate from coffee husk. These compounds were classified as terpenes with relevant biological activities which make them interesting for pharmaceutical and cosmetic industries as discussed in literature.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1

Adapted from Santos et al. [63]

Fig. 2
Fig. 3

Source: adapted from Oliveira [9]

Fig. 4

Adapted from Manach et al. [12] and Rockenbach [14]

References

  1. 1.

    Souza, K.C.A., Abreu, H.S.: Biotechnology applied to the study of lignification. Floresta e Ambiente 14(1), 93–109 (2007)

    Google Scholar 

  2. 2.

    García, A.A., Carril, E.P.-U.: Secondary plant metabolism. Reduca (Biologia) 2(3), 119–145 (2011)

    Google Scholar 

  3. 3.

    Araújo, C.R., Garrido, C.V.S., Santos, J.M.G.M., Leal, S.C.S., Campos, L.M.A.: Study of the chemical and biological hydrolysis routes for the production of second generation ethanol from lignocellulosic residues. Student Seminar on Academic Production 12(1), (2013)

  4. 4.

    Saha, B.C.: Hemicellulose bioconversion. J. Ind. Microbiol. Biot. 30(5), 279–291 (2003)

    Google Scholar 

  5. 5.

    Boopathy, R., Dawson, L.: Cellulosic ethanol production from sugarcane baggase without enzymatic saccharification. BioResources 3(2), 452–460 (2008)

    Google Scholar 

  6. 6.

    Gonzaga, F.M.: Study of the influence of the alkaline/mechanical treatment on the mechanical properties of composites of short sisal/epoxy fibers, a undergraduate thesis presented at the Universidade Federal do Rio de Janeiro (2014)

  7. 7.

    Rabelo, S.C.: Evaluation and optimization of pre-treatments and enzymatic hydrolysis of sugarcane bagasse for the production of second generation ethanol, a doctoral thesis presented at the Universidade Estadual de Campinas (2010)

  8. 8.

    Bruice, P.Y.: Química Orgânica. Pearson Prentice Hall, São Paulo (2006)

    Google Scholar 

  9. 9.

    Oliveira, F.D.C.: Oxidation of lignin from agroindustrial lignocellulosic residues to obtain aromatic chemical compounds with higher value-added, a doctoral thesis presented at the Universidade de São Paulo (2015)

  10. 10.

    Balasundram, N., Sundram, K., Samman, S.: Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem. 99(1), 191–203 (2006)

    Google Scholar 

  11. 11.

    Sousa, C.M., Silva, H.R., Vieira, G.M., Ayres, M.C.C., Costa, C.L.S., Araújo, D.S., Cavalcante, L.C.D., Barros, E.D.S., Araújo, P.B.M., Brandão, M.S., Chaves, M.H.: Total phenols and antioxidant activity of five medicinal plants. Quím. Nova 30(2), 351–355 (2007)

    Google Scholar 

  12. 12.

    Manach, C., Scalbert, A., Morand, C., Rémésy, C., Jiménez, L.: Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr 79(5), 727–747 (2004)

    Google Scholar 

  13. 13.

    King, A., Young, G.: Characteristics and occurrence of phenolic phytochemicals. J. Am. Diet Assoc. 99(2), 213–218 (1999)

    Google Scholar 

  14. 14.

    Rockenbach, I.I.: Phenolic compounds, fatty acids and antioxidant capacity of grape marc from vinification of red grapes (Vitis vinifera and Vitis labrusca), a master’s thesis presented at the Universidade Federal de Santa Catarina (2008)

  15. 15.

    Battestin, V., Matsuda, L.K., Macedo, G.A.: Sources and applications of tannins and tannases in food. Alimentos e Nutrição Araraquara 15(1), 63–72 (2008)

    Google Scholar 

  16. 16.

    Brígida, A.I.S., Rosa, M.D.F.: Determination of Tannin content in the Coconut nucifera Bark. Proc. Interamerican Soc. Trop. Hortic. 47, 25–27 (2003)

    Google Scholar 

  17. 17.

    Costa, C.T.C., Bevilaquia, C.M.L., Morais, S.M., Viera, S.L.: Tannins and their use in small ruminants. Rev. Bras. Plantas Med. 10(4), 108–116 (2008)

    Google Scholar 

  18. 18.

    Almeida, N.F., Mori, F.A., Goulart, S.L., Mendes, L.M.: Study of reactivity of tannins of leaves and barks of Barbatimão Stryphnodendron adstringens (Mart.) Coville. Sci. Forest. 38(87), 401–408 (2010)

    Google Scholar 

  19. 19.

    Durso, T. Sarrouh, B.: Deslignificação da casca de café: pré-tratamento de uma matéria-prima renovável promissora visando à obtenção de moléculas bioativas. 1ª. Ed. Novas Edições Acadêmicas. ISBN: 978620240633-8. p. 53. (2017)

  20. 20.

    Queiroz, S.C.N., Collins, C.H., Jardim, I.C.S.F.: Methods of extraction and/or concentration of compounds found in biological fluids for subsequent chromatographic determination, Quím. Nova 24(1), 68–76 (2001)

    Google Scholar 

  21. 21.

    Engel, R., Kriz, G.S., Lampman, G.M., Pavia, D.L.: Química orgânica experimental – Técnicas em pequena escala, pp. 873–877. Cengage Learning, São Paulo (2012)

    Google Scholar 

  22. 22.

    Chao, W., Lin, B.: Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chin. Med. 5(17), 2–15 (2010)

    Google Scholar 

  23. 23.

    Zhang, C.Y., Tan, B.K.: Mechanism of cardiovascular activity of Andrographispaniculata in the anaesthetized rat. J. Ethnopharmacol. 56, 97–101 (1997)

    Google Scholar 

  24. 24.

    Zhang, C.Y., Tan, B.K.: Vasorelaxation of rat thoracic aorta caused by 14-deoxyandrographolide. Clin. Exp. Pharmacol. Physiol. 25, 424–429 (1998)

    Google Scholar 

  25. 25.

    Yamaki, M., Bai, L., Kato, T., Inoue, K., Takagi, S.: Three dihydrophenanthropyrans from Bletilla Striata. Phytochemistry 32(2), 427–430 (1993)

    Google Scholar 

  26. 26.

    Zhang, C.Y., Tan, B.K., Huang, W., Chen, Y., Jin, B., Chen, N., Ding, Z., Ding, X.: Antioxidant, antityrosinase and antitumor activity comparison: the potential utilization of fibrous root part of Bletilla striata (Thunb.) Reichb.f. PLoS ONE 8(2), e58004 (2013)

    Google Scholar 

  27. 27.

    Lin, L.Z., Zhang, J.S., Chen, Z.L., Xu, R.S.: Isolation and identification of bruceaketolic acid and four other quassinoids. Acta Chim. Sinica 40, 73–78 (1982)

    Google Scholar 

  28. 28.

    Lahrita, L., Moriai, K., Iwata, R., Kato, E.: Quassinoids in Brucea javanica are potent stimulators of lipolysis in adipocytes. Fitoterapia 137, 104250 (2019)

    Google Scholar 

  29. 29.

    Zhang, Y., Liu, L., Xu, F., Shang, M., Liu, G., Cai, S.: Investigation of the in vivo metabolism of Sibirioside A and Angoroside C in rats by HPLC-ESI-IT-TOF-MS. Molecules 23, 2702–2716 (2018)

    Google Scholar 

  30. 30.

    Zhang, L., Zhang, L., Zhang, Y.D.: Comparative study on the pharmacognosy and anti-inflammatory activities of Scrophularia buergeriana Miq. Var. tsinglingensis Tsoong and S. ninpoensis Hemsl. Northwest Pharm. J. 29, 264–267 (2014)

    Google Scholar 

  31. 31.

    Bermejo, B.P., Diaz, L.A., Silvan, S.A., De Santos, G.Z., Fernandez, M.L., Sanz, G.A., Abad, M.J.: Effects of some iridoids from plant origin on arachidonic acid metabolism in cellular systems. Planta Med. 66, 324–328 (2000)

    Google Scholar 

  32. 32.

    Ni, Z., Cai, X.Z., Huang, Y.P., Wang, D.J., Bian, H.M.: Effect of extracts of Scrophularia ningpoensis Hemsl. on hemorrheology, coagulation and fibrinolysis in rats. J. Chin. Microcirc. 3, 152–153 (2004)

    Google Scholar 

  33. 33.

    Liu, G.L., Fu, P.Y., Wang, Z.Y., Xing, D.Y.: Effects of water extract of four Chinese herbal drugs on the binding of insulin with human erythroeyte insulin receptor. Chin. J. Integr. Trad. West. Med. 10, 606–607 (1991)

    Google Scholar 

  34. 34.

    Huan-Li, W., Yan-Jing, L., Jun, C., Ping, L.: Triterpenoid saponins in roots of Achyranthese bidentata. Chin. J. Nat. Med 10(2), 98–101 (2012)

    Google Scholar 

  35. 35.

    Castañeda, C.D.L. Revisión sobre los nortriterpenos aislados de la familia Simaroubaceae, y sobre un arbusto medicinal mexicano “chaparro amargoso” (Castela erecta subsp. texana). PhD thesis, Instituto de Química, U.N.A.M, México. 2005. P.96.

  36. 36.

    Singhal, S., Khare, M.P., Khare, A.: Cissogenin, a pregnane genin from Marsdenia tenacissima. Phytochem. 19(11), 2427–2430 (1980)

    Google Scholar 

  37. 37.

    Weng, C., Chau, C., Hsieh, Y., Yang, S., Yen, G.: Lucidenic acid inhibits PMA-induced invasion of human hepatoma cells through inactivating MAPK/ERK signal transduction pathway and reducing binding activities of NF-kB and AP-1. Carcinogenesis 29(1), 147–156 (2008)

    Google Scholar 

  38. 38.

    Hsu, C., Yen, G.: Chapter three: ganoderic acid and lucidenic acid (triterpenoid). Enzymes 36, 33–56 (2014)

    Google Scholar 

  39. 39.

    Geng, C., Ma, Y., Zhang, X., Yao, S., Xue, D., Zhang, R., Chen, J.: Mulberrofuran G and isomulberrofuran G from Morus alba L. antihepatitis B virus activity and mass spectrometric fragmentation. J. Agric. Food Chem. 60, 8197–8202 (2012)

    Google Scholar 

  40. 40.

    Wei, H., Zhu, J., Liu, X., Feng, W., Wang, Z., Yan, L.: Review of bioactive compounds from root barks of Morus plants (Sang-Bai-Pi) and their pharmacological effects. Cogent Chem. 2, 1212320 (2016)

    Google Scholar 

  41. 41.

    Behl, T.: Herbal plants: a boon in the treatment of diabetic retinopathy. Pharmacologia. 6(1), 1–10 (2015)

    Google Scholar 

  42. 42.

    Bhagya, N., Chandrashekar, K.R.: Tetrandrine: a molecule of wide bioactivity. Phytochemistry 125, 5–13 (2016)

    Google Scholar 

  43. 43.

    Chen, Y.J.: Potential role of tetrandrine in cancer therapy. Acta Pharmacol. Sin. 23(12), 1102–1106 (2002)

    Google Scholar 

  44. 44.

    Huang, Y.L., Cui, S.Y., Cui, X.Y., Cao, Q., Ding, H., Song, J.Z., Hu, X., Ye, H., Yu, B., Sheng, Z.F., Wang, Z.J., Zhang, Y.H.: Tetrandrine, an alkaloid from S. tetrandra exhibits anti-hypertensive and sleep-enhancing effects in SHR via different mechanisms. Phytomedicine 15(23), 1821–1829 (2016)

    Google Scholar 

  45. 45.

    Chandrika, U.G., Prasad Kumarab, P.A.: Gotu kola (Centella asiatica): nutritional properties and plausible health benefits. Adv. Food Nutr. Res. 76, 125–157 (2015)

    Google Scholar 

  46. 46.

    James, J.T., Dubery, I.A.: Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.) urban. Molecules 14, 3922–3941 (2009)

    Google Scholar 

  47. 47.

    Puttarak, P., Brantner, A., Panichayupakaranant, P.: Biological activities and stability of a standardized pentacyclic triterpene enriched Centella asiatica extract. Nat. Prod. Sci. 22(1), 20–24 (2016)

    Google Scholar 

  48. 48.

    Xu, X., Wang, Y., Wei, Z., Wei, W., Zhao, P., Tong, B., Xia, Y., Dai, Y.: Madecassic acid, the contributor to the anti-colitis effect of madecassoside, enhances the shift of Th17 toward Treg cells via the PPARγ/AMPK/ACC1 pathway. Cell Death Dis. 8, e2723 (2017)

    Google Scholar 

  49. 49.

    Bonté, F., Dumas, M., Chaudagne, C., Meybeck, A.: Comparative activity of asiaticoside and madecassoside on type I and III collagen synthesis by cultured human fibroblasts. Ann. Pharm Fr. 53(1), 38–42 (1995)

    Google Scholar 

  50. 50.

    Guo-ping, P., Feng-chang, L.: Isolation and identification of diterpenes from Alisma orientalis Juzep. Acta Pharm. Sinica. 37(12), 950–954 (2002)

    Google Scholar 

  51. 51.

    Hossain, M.E., Kim, G.M., Lee, S.K., Yang, C.J.: Growth performance, meat yield, oxidative stability, and fatty acid composition of meat from broilers fed diets supplemented with a medicinal plant and probiotics. Asian-Australas. J. Anim. Sci. 25, 1159–1168a (1168a)

    Google Scholar 

  52. 52.

    Hossain, M.E., Ko, S.Y., Kim, G.M., Firman, J.D., Yang, C.J.: Evaluation of probiotic strains for development of fermented Alisma canaliculatum and their effects on broiler chickens. Poult. Sci. 91, 3121–3131 (2012)

    Google Scholar 

  53. 53.

    Peng, G.P., Lou, F.C.: Isolation and identification of diterpenoids from Alisma orientalis. Acta Pharm. Sinica 37(12), 950–954 (2002)

    Google Scholar 

  54. 54.

    Ikamo, H., Kawazoe, K., Izumi, K., Sato, Y., Tamaya, T.: Effects of crude herbal ingredients on intrauterineinfection in a rat model. Curr. Ther. Res. 59, 122–127 (1998)

    Google Scholar 

  55. 55.

    Huang, Y.T., Huang, D.M., Chueh, S.C., Teng, C.M., Guh, J.H.: Alisol B acetate, a triterpene from Alismatisrhizoma, induces Bax nuclear translocation and apoptosis in human hormone-resistant prostate cancer PC-3cells. Cancer Lett. 231, 270–278 (2006)

    Google Scholar 

  56. 56.

    Jang, M.K., Han, Y.R., Nam, J.S., Han, C.W., Kim, B.J., Jeong, H.S., Ha, K.T., Jung, M.H.: Protective effects of Alisma orientale extract against hepatic steatosis via inhibition of endoplasmic reticulum stress. Int. J. Mol. Sci. 16, 26151–26165 (2015)

    Google Scholar 

  57. 57.

    Hu, T.M., Zhao, S.X.: The structures of oxofangchirine and stephenanthrine isolated from Stephania tetrandra S. Moore. Acta Pharm. Sin. 21, 29–34 (1986)

    Google Scholar 

  58. 58.

    https://pubchem.ncbi.nlm.nih.gov/compound/10473975#section=2D-Structure

  59. 59.

    https://pubchem.ncbi.nlm.nih.gov/compound/Lucidenic-acid-N

  60. 60.

    https://pubchem.ncbi.nlm.nih.gov/compound/128108

  61. 61.

    https://pubchem.ncbi.nlm.nih.gov/compound/45356919#section=Structures

  62. 62.

    Tian, T., Chen, H., Zhao, Y.: Traditional uses, phytochemistry, pharmacology, toxicology and quality control of Alisma orientale (Sam) Juzep: a review. J. Ethnopharmacol. 158, 373–387 (2014)

    Google Scholar 

  63. 63.

    Santos, F.A., Queiróz, J.H., Colodette, J.L., Guimarães, V.M., Rezende, S.T.: Potencial da palha de cana-de-açúcar para produção de etanol. Quím. Nova 35(5), 1004–1010 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank: CNPq, FAPEMIG and UFSJ for their financial support for the development of this study, and Waters Brazil for H-Class UPLC SM-FTN equipped analysis of the samples.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Boutros Sarrouh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarrouh, B., de Souza, R.O.A., da Silva Florindo, R.H. et al. Extraction and Identification of Biomolecules from Lignin Alkaline Hydrolysate from Coffee Husk. Waste Biomass Valor 12, 787–794 (2021). https://doi.org/10.1007/s12649-020-01021-5

Download citation

Keywords

  • Solvent extraction
  • Lignocellulosic extract
  • Bioactive molecules
  • Phenylpropanoids