Effect of Silicon (Si) Seed Priming on Germination and Effectiveness of its Foliar Supplies on Durum Wheat (Triticum turgidum L. ssp. durum) Genotypes under Semi-Arid Environment


Silicon (Si), a nutrient that currently arousing more and more interest from researchers, particularly in relation to water deficit resistance for durum wheat (Triticum turgidum L. ssp. Durum). The present study aimed to explore the effectiveness of Si seed priming and foliar application on durum wheat performances. Thus, a seed bioassay was conducted to assess the effect of three Si levels (15 and 20 mg/l from Na2SiO3H2O (sodium metasilicate powder extra pure) on the germination of 25 durum wheat genotypes under osmotic stress (150 g/l of PEG6000). Under field conditions in semi-arid environment, we evaluated the Si foliar application potential benefits on the physiological and agro-morphological traits. Results showed that Si application, in particular using 15 mg/l, increased significantly the germination percentage (23.96 and 22.37%) the germination index (24.67 and 25.69%), the length of shoot (23.58 and 21.65%) and roots (22.40 and 20.81%), the seedling fresh weight (35.82% and 27.80%), and the seedling vigor index (41.58% and 38.95%) under non-stressed and stressed conditions, respectively. L6 showed the highest value of germination percentage, shoot and root length, and seedling vigor index for all treatments. In semi-arid conditions, Si foliar application enhanced the relative water content (11.66%) and the chlorophyll index (13.60%). In addition, Si increased spike length (8.47%), seed number/spike (19.01%) and grain yield (19.90%) of all durum wheat genotypes. Differential genotypic responses to Si application were observed at both seedling and adult stages.

This is a preview of subscription content, access via your institution.

Data Availability



  1. 1.

    Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147. https://doi.org/10.3389/fpls.2017.01147

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Lamaoui M, Jemo M, Datla R, Bekkaoui F (2018) Heat and drought stresses in crops and approaches for their mitigation. Front Chem 6:26. https://doi.org/10.3389/fchem.2018.00026

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Bennani S, Nsarellah N, Birouk A, Ouabbou H, Tadesse W (2016) Effective selection criteria for screening drought tolerant and high yielding bread wheat genotypes. Univ J Agric Res 4:134–142. https://doi.org/10.13189/ujar.2016.040404

    Article  Google Scholar 

  4. 4.

    Xiao D, Huizi B, Liu DL (2018) Impact of future climate change on wheat production: a simulated case for China’s wheat system. Sustainability 10:1277. https://doi.org/10.3390/su10041277

    CAS  Article  Google Scholar 

  5. 5.

    Liu H, Able AJ, Able JA (2020) Transgenerational effects of water-deficit and heat stress on germination and seedling vigour—new insights from durum wheat microRNAs. Plants 9:189. https://doi.org/10.3390/plants9020189

    CAS  Article  Google Scholar 

  6. 6.

    IPCC (2007) Intergovernmental panel on climate change. Climate change 2007-the physical science basis. Cambridge University press, Cambridge

  7. 7.

    Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  8. 8.

    Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057. https://doi.org/10.1007/s00018-008-7580-x

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Neu S, Schaller J, Dude EG (2017) Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.). Sci rep 7:40829. https://doi.org/10.1038/srep40829

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Laane H (2017) The effects of the application of foliar sprays with stabilized silicic acid: an overview of the results from 2003-2014. Silicon 9:803–807. https://doi.org/10.1007/s12633-016-9466-0

    CAS  Article  Google Scholar 

  11. 11.

    Kowalska J, Tyburski J, Jakubowska M, Krzymińska J (2020) Effect of different forms of silicon on growth of spring wheat cultivated in organic farming system. Silicon. 13:211–217. https://doi.org/10.1007/s12633-020-00414-4

    CAS  Article  Google Scholar 

  12. 12.

    Bukhari MA, Ahmad Z, Ashraf MY, Afzal M, Nawaz F, Nafees M, Jatoi WN, Malghani NA, Shah AN, Manan A (2020) Silicon mitigates drought stress in wheat (Triticum aestivum L.) through improving photosynthetic pigments, biochemical and yield characters. Silicon. https://doi.org/10.1007/s12633-020-00797-4

  13. 13.

    Adrees M, Ali S, Rizwan M, Rehman MZ, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK (2015) Mechanisms of silicon mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197. https://doi.org/10.1016/j.ecoenv.2015.05.011

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Coskun D, Britto DT, Huynh WQ, Kronzucker HJ (2016) The role of silicon in higher plants under salinity and drought stress. Front Plant Sci 7:1072. https://doi.org/10.3389/fpls.2016.01072

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, Rehman MZ, Waris AA (2019) Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214:269–277. https://doi.org/10.1016/j.chemosphere.2018.09.120

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34:455–472. https://doi.org/10.1007/s13593-013-0194-1

    CAS  Article  Google Scholar 

  17. 17.

    Bodner G, Nakhforoosh A, Kaul HP (2015) Management of crop water under drought: a review. Agron Sustain Dev 35:401–442. https://doi.org/10.1007/s13593-015-0283-4

    Article  Google Scholar 

  18. 18.

    Rizwan M, Ali S, Ibrahim M, Farid M, Adrees M, Bharwana SA, Zia-ur-Rehman M, Qayyum MF, Abbas F (2015) Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environ Sci Pollut Res 22:15416–15431. https://doi.org/10.1007/s11356-015-5305-x

    CAS  Article  Google Scholar 

  19. 19.

    Liu P, Yin L, Wang S, Zhang M, Deng X, Zhang S, Tanaka K (2015) Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ Exp Bot 111:42–51. https://doi.org/10.1016/j.envexpbot.2014.10.006

    CAS  Article  Google Scholar 

  20. 20.

    Etesami H, Jeong BR (2018) Silicon (Si): review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol Environ Saf 147:881–896. https://doi.org/10.1016/j.ecoenv.2017.09.063

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Haghighi M, Afifipour Z, Mozafarian M (2012) The alleviation effect of silicon on seed germination and seedling growth of tomato under salinity stress. Veg Crop Res Bull 76:119–126. https://doi.org/10.2478/v10032-012-0008-z

    CAS  Article  Google Scholar 

  22. 22.

    Meena VD, Dotaniya ML, Coumar V, Rajendiran S, Kundu S, Rao AS (2014) A case for silicon fertilization to improve crop yields in tropical soils. Proc Natl Acad Sci India B Biol Sci 84:505–518. https://doi.org/10.1007/s40011-013-0270-y

    CAS  Article  Google Scholar 

  23. 23.

    Othmani A, Ayed S, Chamekh Z, Rezgui M, Slim-Amara H, Ben Younes M (2016) Silicon alleviates adverse effect of drought stress induced by polyethylene glycol (PEG8000) on seed germination and seedling growth of durum wheat varieties. Int J Curr Res 8:40847

    CAS  Google Scholar 

  24. 24.

    Othmani A, Ayed S, Bezzin O, Farooq M, Ayed-Slama O, Slim-Amara H, Ben Younes M (2020) Effect of silicon supply methods on durum wheat (Triticum durum Desf.) response to drought stress. Silicon. https://doi.org/10.1007/s12633-020- 00639-3

  25. 25.

    Maghsoudi K, Emam Y, Pessarakli M (2016) Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. J Plant Nutr 39:1001–1015. https://doi.org/10.1080/01904167.2015.1109108

    CAS  Article  Google Scholar 

  26. 26.

    Ahmed M, Qadeer U, Ul-Hassan F, Fahad S, Naseem W, Duangpan S, Ahmad S (2020) In: Hasanuzzaman M (ed) Agronomic crops volume 3: stress responses and tolerance. Singapore, Springer

    Google Scholar 

  27. 27.

    Verma KK, Anas M, Chen Z, Rajput VD, Malviya MK, Verma CL, Singh RK, Singh P, Song XP, Li YR (2020) Silicon supply improves leaf gas exchange, antioxidant defense system and growth in sugarcane responsive to water limitation. Plants 9:1032. https://doi.org/10.3390/plants9081032

    CAS  Article  PubMed Central  Google Scholar 

  28. 28.

    Vaculík M, Lukačová Z, Bokor B, Martinka M, Tripathi DK, Lux A (2020) Alleviation mechanisms of metal(loid) stress in plants by silicon: a review. J Exp Bot, eraa288. https://doi.org/10.1093/jxb/eraa288

  29. 29.

    Lutts S, Benincasa P, Wojtyla L, Kubala S, Pace R, Lechowska K, Quinet M, Garnczarska M (2016) In: Araújo S (ed) new challenges in seed biology- Basic and translational research driving seed technology. https://doi.org/10.5772/64420

  30. 30.

    Singh M, Singh AK, Nehal N, Sharma N (2018) Effect of proline on germination and seedling growth of rice (Oryza sativa L.) under salt stress. J Pharmacogn Phytochem 7:2449–2452

    CAS  Google Scholar 

  31. 31.

    Pang Z, Tayyab M, Islam W, Tarin MW, Sarfa-Raz R, Naveed H, Zaman S, Zhang B, Yuan Z, Zhang H (2019) Silicon mediated improvement in tolerance of economically important crops under drought stress. Appl Ecol Environ Res 17:6151–6170. https://doi.org/10.15666/aeer/1703_61516170

    Article  Google Scholar 

  32. 32.

    Hameed A, Sheikh MA, Jamil A, Basra SMA (2013) Seed priming with sodium silicate enhances seed germination and seedling growth in wheat (Triticum aestivum L.) under water deficit stress induced by polyethylene glycol. Pak J Life Soc Sci 11:19–24

    Google Scholar 

  33. 33.

    Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212. https://doi.org/10.1007/978-90-481-2666-8_12

    Article  Google Scholar 

  34. 34.

    Ahmed M, Kamran A, Asif M, Qadeer U, Zammurad IA, Goyal A (2013) Silicon priming: a potential source to impart abiotic stress tolerance in wheat: a review. Aust J Crop Sci 7:484–491

    CAS  Google Scholar 

  35. 35.

    Gong HJ, Chen KM (2012) The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiol Plant 34:1589–1594. https://doi.org/10.1007/s11738-012-0954-6

    CAS  Article  Google Scholar 

  36. 36.

    Chen W, Yao XQ, Cai KZ, Chen JN (2011) Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol Trace Elem Res 142:67–76. https://doi.org/10.1007/s12011-010-8742

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Shen XF, Zhou YY, Duan LS, Li ZH, Eneji AE, Li JM (2010) Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J Plant Physiol 167:1248–1252. https://doi.org/10.1016/j.jplph.2010.04.011

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Liang YC, Sun WC, Si J, Römheld V (2005) Effects of foliar- and root- applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathol 54:678–685. https://doi.org/10.1111/j.1365-3059.2005.01246.x

    CAS  Article  Google Scholar 

  39. 39.

    Guével MH, Menzies JG, Bélanger RR (2007) Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. Eur J Plant Pathol 119:429–436. https://doi.org/10.1007/s10658-007-9181-1

    CAS  Article  Google Scholar 

  40. 40.

    Ahmad Z, Waraich EA, Barutçular C, Hossain A, Erman M, ÇiĞ F, Gharib HS, El Sabagh A (2020) Enhancing drought tolerance in wheat through improving morpho-physiological and antioxidants activities of plants by the supplementation of foliar silicon. Phyton Int J Exp Bot 89:529–539. https://doi.org/10.32604/phyton.2020.09143

    Article  Google Scholar 

  41. 41.

    Maghsoudi K, Emam Y, Ashraf M (2015) Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. Turk J Bot 39:625–634. https://doi.org/10.3906/bot-1407-11

    CAS  Article  Google Scholar 

  42. 42.

    Melo SP, Korndorfer GH, Korndorfer CM, Lana RMQ, Santan DG (2003) Silicon accumulation and water deficient tolerance in grasses. Sci Agric 60:755–759. https://doi.org/10.1590/S0103-90162003000400022

    Article  Google Scholar 

  43. 43.

    Zhu YX, Xu XB, Hu YH, Han WH, Yin JL, Li HL, Gong HJ (2015) Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L. Plant Cell Rep 34:1629–1646. https://doi.org/10.1007/s00299-015-1814-9

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Chen D, Wang S, Yin L, Deng X (2018) How does silicon mediate plant water uptake and loss under water deficiency? Front Plant Sci 9:281. https://doi.org/10.3389/fpls.2018.00281

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Ming DF, Pei ZF, Naeem MS, Gong HJ, Zhou WJ (2012) Silicon alleviates PEG- induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. J Agron Crop Sci 198:14–26. https://doi.org/10.1111/j.1439-037X.2011.00486.x

    CAS  Article  Google Scholar 

  46. 46.

    Alzahrani Y, Kuşvuran A, Alharby HF, Kuşvuran S, Rady MM (2018) The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicol Environ Saf 154:187–196. https://doi.org/10.1016/j.ecoenv.2018.02.057

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Bukhari MA, Ashraf MY, Ahmad R, Waraich EA, Hameed M (2015) Improving drought tolerance potential in wheat (Triticum aestivum L.) through exogenous silicon supply. Pak J Bot 47:1641–1648

    CAS  Google Scholar 

  48. 48.

    Marmar A, Baenziger S, Dweikat I, El Hussein AA (2013) Preliminary screening for water stress tolerance and genetic diversity in wheat (Triticum aestivum L.) cultivars from Sudan. J Genet Eng Biotechnol 11:87–94. https://doi.org/10.1016/j.jgeb.2013.08.004

    Article  Google Scholar 

  49. 49.

    Prabhakar S, Hesham MI, Markus F, William FS, Thorsten K (2013) Critical water potentials for germination of wheat cultivars in the dryland Northwest USA. Seed Sci Res 23:189–198. https://doi.org/10.1017/S0960258513000172

    Article  Google Scholar 

  50. 50.

    USDA (2013) Soil classification: a comprehensives system (prepared by) soil survey staff. Government Printing Office, Washington

    Google Scholar 

  51. 51.

    Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x

    Article  Google Scholar 

  52. 52.

    Clarck JM, Mac-Caig TN (1982) Excised leaf water relation capability as an indicator of drought resistance of Triticum genotypes. Can J Plant Sci 62:571–576. https://doi.org/10.4141/cjps82-086

    Article  Google Scholar 

  53. 53.

    Shi Y, Zhang Y, Yao HJ, Wu JW, Sun H, Gong HJ (2014) Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiol Biochem 78:27–36. https://doi.org/10.1016/j.plaphy.2014.02.009

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Zargar SM, Agnihotri A (2013) Impact of silicon on various agro-morphological and physiological parameters in maize and revealingits role in enhancing water stress tolerance. Emir J Food Agr 25:138–141. https://doi.org/10.9755/ejfa.v25i2.10581

    Article  Google Scholar 

  55. 55.

    Biju S, Fuentes S, Gupta D (2017) Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes and antioxidant defense system. Plant Physiol Biochem 119:250–264. https://doi.org/10.1016/j.plaphy.2017.09.001

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Ruan S, Xue Q, Tylkowska K (2002) The influence of priming on germination of rice Oryza sativa L. seeds and seedling emergence and performance in flooded soil. Seed Sci Technol 30:61–67

    Google Scholar 

  57. 57.

    Asgedom H, Becker M (2001) In: Proc. Deutscher Tropentag, University of Bonn and ATSAF, Magrraf Publishers Press, Weickersheim

  58. 58.

    Ajouri A, Haben A, Becker M (2004) Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. J Plant Nutr Soil Sci 167:630–636. https://doi.org/10.1002/jpln.200420425

    Article  Google Scholar 

  59. 59.

    Robin AHK, Uddin MJ, Bayazid KN (2015) Polyethylene glycol (PEG)-treated hydroponic culture reduces length and diameter of root hairs of wheat varieties. Agronomy 5:506–518. https://doi.org/10.3390/agronomy5040506

    CAS  Article  Google Scholar 

  60. 60.

    Steiner F, Zuffo AM, Zoz T, Zoz A, Zoz J (2017) Drought tolerance of wheat and black oat crops at early stages of seedling growth. Rev Fac Cienc Agrar 40:573–583. https://doi.org/10.19084/RCA16118

    Article  Google Scholar 

  61. 61.

    Faisal S, Mujtaba SM, Khan MA, Mahboob W (2017) Morpho-physiological assessment of wheat (Triticum aestivum L.) genotypes for drought stress tolerance at seedling stage. Pak J Bot 49:445–452

    Google Scholar 

  62. 62.

    Bouzoubaâ Z (2005) In: Boulanouar B, Kradi C (eds) Actes du Symposium International sur le Développement Durable des Systèmes Oasiens, 08–25 Mars 2005. Maroc, Erfoud

    Google Scholar 

  63. 63.

    Kim YH, Khan AL, Kim DH, Lee SY, Kim KM, Waqas M, Jung HY, Shin JH, Kim JG, Lee IJ (2014) Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol 14:13. https://doi.org/10.1186/1471-2229-14-13

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Lee S, Sohn E, Hamayun M, Yoon J, Lee I (2010) Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agrofor Syst 80:333–340. https://doi.org/10.1007/s10457-010-9299-6

    Article  Google Scholar 

  65. 65.

    Wynn Parry D, Kelso M (1977) The ultrastructure and analytical microscopy of silicon deposits in the roots of Saccharum officinarum (L.). Ann Bot 41(4):855–862. https://doi.org/10.1093/oxfordjournals.aob.a085361

    Article  Google Scholar 

  66. 66.

    Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach, second Edition. John Wiley & Son, Chichester

  67. 67.

    Gong HJ, Chen KM, Chen GC, Wang SM, Zhang CL (2003) Effects of silicon on growth of wheat under drought. J Plant Nutr 26:1055–1063. https://doi.org/10.1081/PLN-120020075

    CAS  Article  Google Scholar 

  68. 68.

    Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321. https://doi.org/10.1081/PLN-120020075

    CAS  Article  Google Scholar 

  69. 69.

    Gunes A, Pilbeam DJ, Inal A, Bagci EG, Coban S (2007) Influence of silicon on antioxidant mechanisms and lipid peroxidation in chickpea (Cicer arietinum L.) cultivars under drought stress. J Plant Interact 2:105–113. https://doi.org/10.1080/17429140701529399

    CAS  Article  Google Scholar 

  70. 70.

    Gunes A, Pilbeam DJ, Inal A, Coban S (2008) Influence of silicon on sunflower cultivars under drought stress, I: growth, antioxidant mechanisms, and lipid peroxidation. Commun Soil Sci Plant Anal 39:1885–1903. https://doi.org/10.1080/00103620802134651

    CAS  Article  Google Scholar 

  71. 71.

    Ma JF, Mitani N, Nagao S, Konishi S (2004) Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiol 136:3284–3289. https://doi.org/10.1104/pp.104.047365

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Ahmed SAE, Fadol AAM, Allah AMD, Abass MMR (2015) Determination of energy gaps and effect of temperature on the absorption and transmittance spectrum on photoelectrodye. Int J Sci Eng Technol 4:2–9

    Google Scholar 

  73. 73.

    Yin LN, Wang SW, Li JY, Tanaka K, Oka M (2013) Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiol Plant 35:3099–3107. https://doi.org/10.1007/s11738-013-1343-5

    CAS  Article  Google Scholar 

  74. 74.

    Daoud AM, Hemada MM, Saber N, El-Araby AA, Moussa L (2018) Effect of silicon on the tolerance of wheat (Triticum aestivum L.) to salt stress at different growth stages: case study for the management of irrigation water. Plants 7:29. https://doi.org/10.3390/plants7020029

    CAS  Article  Google Scholar 

  75. 75.

    Kaya C, Tuna L, Higgs D (2006) Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J Plant Nutr 29:1469–1480. https://doi.org/10.1080/01904160600837238

    CAS  Article  Google Scholar 

  76. 76.

    Liang YZJ, Li Z, Chu G, Ding Y, Zhang J, Sun W (2008) Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environ Exp Bot 64:286–294. https://doi.org/10.1016/j.envexpbot.2008.06.005

    CAS  Article  Google Scholar 

  77. 77.

    Karmollachaab A, Bakhshandeh A, Gharineh MH, Telavat MMR, Fathi G (2013) Effect of silicon application on physiological characteristics and grain yield of wheat under drought stress condition. Int J Agron Plant Prod 4:30–37

    Google Scholar 

  78. 78.

    White B, Tubana BS, Babu T, Henry MJ, Flavia A, Datnoff LE, Harrison S (2017) Effect of silicate slag application on wheat grown under two nitrogen rates Brandon. Plants 6:47. https://doi.org/10.3390/plants6040047

    CAS  Article  PubMed Central  Google Scholar 

  79. 79.

    Qamar R, Anjum I, Rehman AU, Safdar ME, Javeed HMR, Rehman A, Ramzan Y (2020) Mitigating water stress on wheat through foliar application of silicon. Asian J Agric Biol 8:1–10. https://doi.org/10.35495/ajab.2019.04.174

    Article  Google Scholar 

  80. 80.

    Amin M, Ahmad R, Ali A, Aslam M, Lee DJ (2015) Silicon fertilization improves the maize (Zea mays L.) performance under limited moisture supply. Cereal Res Commun 44:172–185. https://doi.org/10.1556/0806.43.2015.035

    CAS  Article  Google Scholar 

  81. 81.

    Segalin SR, Huth C, D’Avila Roa T, Pahins DB, Mertz LM, Nunes UR, Martin TN (2013) Foliar application of silicon and the effect on wheat seed yield and quality. J Seed Sci 35:86–91. https://doi.org/10.1590/S2317-15372013000100012

    Article  Google Scholar 

  82. 82.

    Martin TN, Nunes UR, Stecca JDL, Pahins DB (2017) Foliar application of silicon on yield components of wheat crop. Rev Caatinga 30:578–585. https://doi.org/10.1590/1983-21252017v30n305rc

    Article  Google Scholar 

Download references

Author information




Sourour Ayed, Afef Othmani, and Imen Bouhaouel conceived the project. Syrine Othmani performed the experiment. Neila Rassaa analyzed the data. Sourour Ayed, Afef Othmani, and Imen Bouhaouel wrote the paper. Hajer Slim Amara contributed reagents and materials and revised the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sourour Ayed.

Ethics declarations


Conflict of Interest

The authors declare that they have no conflict of interest.

Consent to Participate

The authors give full consent to participate in this research work.

Consent for Publication

The authors give full consent for publication of this research work.

Code Availability

No applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information


(DOCX 106 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ayed, S., Othmani, A., Bouhaouel, I. et al. Effect of Silicon (Si) Seed Priming on Germination and Effectiveness of its Foliar Supplies on Durum Wheat (Triticum turgidum L. ssp. durum) Genotypes under Semi-Arid Environment. Silicon (2021). https://doi.org/10.1007/s12633-021-00963-2

Download citation


  • Durum wheat
  • Seed priming
  • Semi-arid environment
  • Silicon