Electronic Properties of SiB Nanoribbons in Density Functional Theory

Abstract

The present study investigates the electronic and magnetic properties of hydrogenated armchair/zigzag SiB nanoribbons with different widths. The calculations are carried out within the framework of the density functional theory using the full potential linearized augmented plane waves and the generalized gradient approximation for the exchange-correlation functional. Based on the results, it has been found that the nanoribbons have a metallic behavior, meaning that the density of states around the Fermi level increases as the width of the nanoribbon increases. Also, spin polarization calculations showed that the ribbons have magnetic ordering properties. Overall, in this work, a method has been introduced to investigate the electronic properties of SiB nanoribbons. The method has the capability to be extended to other nanoribbons.

This is a preview of subscription content, access via your institution.

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) . Nature Mater 6:652

    CAS  Article  Google Scholar 

  2. 2.

    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) . Nature 438:197

    CAS  Article  Google Scholar 

  3. 3.

    Zhang Y, Tan YW, Stormer HL, Kim P (2005) . Nature 438:201

    CAS  Article  Google Scholar 

  4. 4.

    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) . Science 312:1191

    CAS  Article  Google Scholar 

  5. 5.

    Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN, de Heer WA, Phys J (2004) . Chem B 108:19912

    CAS  Article  Google Scholar 

  6. 6.

    Son YW, Cohen ML, Louie SG (2006) . Nature 444:347

    CAS  Article  Google Scholar 

  7. 7.

    Kusakabe K, Maruyama M (2003) . Phys Rev B 67:092406

    Article  Google Scholar 

  8. 8.

    Yamashiro A, Shimoi Y, Harigaya K, Wakabayashi K (2003) . Phys Rev B 68:193410

    Article  Google Scholar 

  9. 9.

    Son YW, Cohen ML, Louie SG (2006) . Phys Rev Lett 97:216803

    Article  Google Scholar 

  10. 10.

    Zhang JM, Zheng FL, Zhang Y, Ji V (2010) . J Mater Sci 45:3259

    CAS  Article  Google Scholar 

  11. 11.

    Ezawa M (2006) . Phys Rev B 73:045432

    Article  Google Scholar 

  12. 12.

    Salimian F, Dideban D (2019) . Mat Sci Semicon Proc 93:92

    CAS  Article  Google Scholar 

  13. 13.

    Fadaie M, Dideban D, Gülseren O (2020) . Appl Phys A 126:460

    CAS  Article  Google Scholar 

  14. 14.

    Vali M, Safa S, Dideban D, Mater J (2018) . Sci Mater Electron 29:20522

    CAS  Article  Google Scholar 

  15. 15.

    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Le Lay G (2012) . Phys Rev Lett 108:155501

    Article  Google Scholar 

  16. 16.

    Dai J, Zhao Y, Wu X, Yang J, Zeng XC (2013) . J Phys Chem Lett 4:561

    CAS  Article  Google Scholar 

  17. 17.

    Ding Y, Wang Y (2013) . J Phys Chem C 117:18266

    CAS  Article  Google Scholar 

  18. 18.

    De Padova P, Quaresima C, Ottaviani C, Sheverdyaeva PM, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H, Aufray B, Lay GL (2010) . Appl Phys Lett 96:261905

    Article  Google Scholar 

  19. 19.

    Mousavi H, Khodadadi J (2016) . Phys Lett A 380:3823

    CAS  Article  Google Scholar 

  20. 20.

    Hansson A, de F, Mota B, Rivelino R (2014) . Phys Chem Chem Phys 16:14473

  21. 21.

    Holister P, Harper TE, Roman C (2003) The nanotechnology opportunity report. Cientifica 3:1

    Google Scholar 

  22. 22.

    Guzman-Verri GG, Voon LCLY (2007) . Phys Rev B 76:075131

    Article  Google Scholar 

  23. 23.

    Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2014) WIEN2K (An augmented plane wave plus local orbitals program for calculating crystal properties), University of Technology Vienna/Austria

  24. 24.

    Perdew JP, Burke K, Ernzerhof M (1997) . Phys Rev Lett 77:3865

    Article  Google Scholar 

  25. 25.

    Bader RFW (1990) Atoms in molecules: a quantum theor. Clarendon Press, Oxford

    Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shahdokht Sohrabi Sani.

Ethics declarations

The authors are committed to fully complying with the ethical standards of this journal.

Conflict of interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sani, S.S., Karami, M. Electronic Properties of SiB Nanoribbons in Density Functional Theory. Silicon (2021). https://doi.org/10.1007/s12633-020-00926-z

Download citation

Keywords

  • SiB nanoribbons
  • Electronic properties
  • Magnetic moment
  • Density functional theory