Silicon Nanoparticles Preparation by Induction Plasma Technology for Li-ion Batteries Anode Material

Abstract

The monocrystalline silicon nanoparticles were prepared by induction plasma technology with micron silicon powder as raw material. The mean particle size is 70 and 15 nm silicon nanoparticles prepared with the quenching gas flow rate at 50 and 100 L min−1, respectively. The particle size, crystallinity and morphology are mainly influenced by the quenching gas flow rate. The fine grit silicon nanoparticles can be formed under the condition of high quenching gas flow rate due to the inhibition of nucleation and growth. The silicon nanoparticles were used to synthesis Si@Graphite composites, the initial discharge capacity and coulombic efficiency of 70 nm Si@Graphite composites are 531.9 mAh g−1 and 83.4%, while 15 nm Si@Graphite composites are 510.6 mAh g−1 and 81.73%, respectively. The capacity retention of 70 nm Si@Graphite composites after 500 cycles is only 52.9%, while 15 nm Si@Graphite composites is 88%. It has been found the fracture of silicon nanoparticles and graphite along with the destruction of electrode structure lead to the capacity loss in the 70 nm Si@Graphite composites electrode. Because the forming of larger solid electrolyte interphase (SEI) film in 15 nm Si@Graphite composites electrode, the charge transfer on the electrode surface is hindered. However, the lithium-ion diffusion ability of 15 nm Si@Graphite composites is little higher than 70 nm Si@Graphite composites.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Zuo XX, Zhu J, Müller-Buschbaum P, Cheng YJ (2017) Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31:113–143

    CAS  Google Scholar 

  2. 2.

    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262

    CAS  Google Scholar 

  3. 3.

    Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    CAS  Google Scholar 

  4. 4.

    Jaegeon R, Hong DK, Myoungsoo S, Park SJ, Multiscale H (2016) Silicon flake anodes for high initial Coulombic efficiency and cycle stability. ACS Nano 10:10589–10597

    Google Scholar 

  5. 5.

    Lu B, Ma BJ, Yu RZ, Lu Q, Cai SY, Chen MF, Wu ZY, Xiang KX, Wang XY (2017) Photovoltaic monocrystalline silicon waste-derived hierarchical silicon/flake graphite/carbon composite as low-cost and high-capacity anode for lithiumion batteries. ChemistrySelect 2:3479–3489

    CAS  Google Scholar 

  6. 6.

    Fang WH, Wang JY, Shi ZK, Yan SP, Song BH, Peng XK, Zhang YX (2018) Surface Modification of silicon nanoparticles by an “Ink” layer for Advanced lithium ion batteries. ACS Appl Mater Interfaces 10:19639–19648

    Google Scholar 

  7. 7.

    Bin W, Ryu JG, Choi SH, Zhang XH, Didier P, Li XL, Zhi LJ, Park SJ, Rodney SR (2019) Ultrafast-charging silicon-based coral-like network anodes for lithium-ion batteries with high energy And power densities. ACS Nano 13:2307–2315

    Google Scholar 

  8. 8.

    Zhang F, Yang X, Xie Y, Yi N, Huang Y, Chen Y (2015) Pyrolytic carbon-coated Si nanoparticles on elastic graphene framework as anode materials for high-performance lithium-ion batteries. Carbon 82:161–167

    CAS  Google Scholar 

  9. 9.

    Hassan FM, Elsayed AR, Chabot V, Batmaz R, Xiao XC, Chen ZW (2014) Subeutectic growth of single-crystal silicon nanowires grown on and wrapped with grapheme nanosheets: high-performance anode material for lithium-ion battery. ACS Appl Mater Interfaces 6:13757–13764

    CAS  PubMed  Google Scholar 

  10. 10.

    Su JM, Zhang CC, Chen X, Liu SY, Huang T, Yu AS (2018) Carbon-shell-constrained silicon cluster derived from Al-Si alloy as long-cycling life lithium ion batteries anode. J Power Sources 381:66–71

    CAS  Google Scholar 

  11. 11.

    Jin Y, Li S, Kushima A, Zheng XQ, Sun YM, Xie J, Sun J, Xue WJ, Zhou GM, Wu J, Shi FF, Zhang RF, Zhu Z, So KP, Cui Y, Li J (2017) Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy Environ Sci 10:580–592

    CAS  Google Scholar 

  12. 12.

    Chen S, Chen Z, Luo YJ, Xia M, Cao CB (2017) Silicon hollow sphere anode with enhanced cycling stability by a template-free method. Nanotechnology 28:165404

    PubMed  Google Scholar 

  13. 13.

    Gao H, Xiao LS, Plume I, Xu GL, Ren Y, Zuo XB, Liu YZ, Schulz C, Wiggers H, Amine K, Chen ZH (2017) Parasitic reactions in nanosized silicon anodes for lithium-ion batteries. Nano Lett 17:1512–1519

    CAS  PubMed  Google Scholar 

  14. 14.

    Ma BJ, Lu B, Luo J, Deng XL, Wu ZY, Wang XY (2018) The hollow mesoporous silicon nanobox dually encapsulated by SnO2/C as anode material of lithium ion battery. Electrochim Acta 288:61–70

    CAS  Google Scholar 

  15. 15.

    Chae S, Kim N, Ma J, Cho J, Ko M (2017) One-to-one comparison of graphite-blended negative electrodes using silicon nanolayer-embedded graphite versus commercial benchmarking materials for high-energy lithium-ion batteries. Adv Energy Mater 7:1700071

    Google Scholar 

  16. 16.

    Kim SO, Manthiram A (2015) A facile, low-cost synthesis of high-performance silicon-based composite anodes with high tap density for lithium-ion batteries. J Mater Chem A 3:2399–2406

    CAS  Google Scholar 

  17. 17.

    Luo W, Wang YX, Chou SL, Xu YF, Li W, Kong B, Dou SX, Liu HK, Yang JP (2016) Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes. Nano Energy 27:255–264

    CAS  Google Scholar 

  18. 18.

    Kim WS, Hwa Y, Shin JH, Yang M, Sohn HJ, Hong SH (2014) Scalable synthesis of silicon nanosheets from sand as an anode for Li-ion batteries. Nanoscale 6:4297–4302

    CAS  PubMed  Google Scholar 

  19. 19.

    Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu LB, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol 7:310–315

    CAS  PubMed  Google Scholar 

  20. 20.

    Salvatierra RV, Raji ARO, Lee SK, Ji YS, Li L, Tour JM (2016) Silicon nanowires and lithium cobalt oxide nanowires in graphene nanoribbon papers for full lithium ion battery. Adv Energy Mater 6:1600918

    Google Scholar 

  21. 21.

    Chen SQ, Shen LF, Aken PA, Maier J, Yu Y (2017) Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv Mater 29:1605650

    Google Scholar 

  22. 22.

    Hwang TH, Lee YM, Kong BS, Seo JS, Choi JW (2012) Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett 12:802–807

    CAS  PubMed  Google Scholar 

  23. 23.

    Hu RZ, Sun W, Chen YL, Zeng MQ, Zhu M (2014) Silicon/graphene based nanocomposite anode: large-scale production and stable high capacity for lithium ion batteries. J Mater Chem A 2:9118–9125

    CAS  Google Scholar 

  24. 24.

    Yang JP, Wang YX, Li W, Wang LJ, Fan YC, Jiang W, Luo W, Wang Y, Kong B, Selomulya C, Liu HK, Dou SX, Zhao DY (2017) Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv Mater 29:1700523

    Google Scholar 

  25. 25.

    Chen HD, Hou XH, Qu LN, Qin HQ, Ru Q, Huang Y, Hu SJ, Lam K (2017) Electrochemical properties of core–shell nano-Si@carbon composites as superior anode materials for high-performance Li-ion batteries. J Mater Sci Mater Electron 28:250–258

    CAS  Google Scholar 

  26. 26.

    Kambara M, Kitayama A, Homma K, Hideshima T, Kaga M, Sheem KY, Ishida S, Yoshida T (2014) Nano-composite Si particle formation by plasma spraying for negative electrode of Li ion batteries. J Appl Phys 115:143302

    Google Scholar 

  27. 27.

    Zhang H, Qin X, Wu J, He YB, Du H, Li B et al (2015) Electrospun core-shell silicon/carbon fibers with internal honeycomb-like conductive carbon framework as anode for lithium ion batteries. J Mater Chem 3:7112–7120

    CAS  Google Scholar 

  28. 28.

    So KS, Lee HJ, Kim TH (2014) Synthesis of silicon nanopowder from silane gas by RF thermal plasma. Phys Status Solidi A 211:310–315

    CAS  Google Scholar 

  29. 29.

    Oumellal Y, Delpuech N, Mazouzi D (2011) The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries. J Mater Chem 21:6201

    CAS  Google Scholar 

  30. 30.

    Seo JH, Kim DU, Nam JS, Hong SH, Sohn SB, Song SM (2007) Radio frequency thermal plasma treatment for size reduction and spheroidization of glass powders used in ceramic electronic devices. J Am Ceram Soc 90:1717–1722

    CAS  Google Scholar 

  31. 31.

    Liu XP, Wang KS, Hu P, Chen Q, Volinsky AA (2015) Spheroidization of molybdenum powder by radio frequency thermal plasma. Int J Miner Metall Mater 22:1212–1218

    CAS  Google Scholar 

  32. 32.

    Kim KH, Choi H, Han C (2016) Tungsten micropowder/copper nanoparticle core/shell-structured composite powder synthesized by inductively coupled thermal plasma process. Metall Matter Trans A 48:1–7

    CAS  Google Scholar 

  33. 33.

    Ji-Won O, Hyunwoong N, Soo CY et al (2018) In situ synthesis of bimetallic tungsten-copper nanoparticles via reactive radio-frequency (RF) thermal plasma. Nanoscale Res Lett 13:220

    Google Scholar 

  34. 34.

    Zhou Y, Tian Z, Fan R, Zhao S, Zhou R, Guo H, Wang Z (2015) Scalable synthesis of Si/SiO2@C composite from micro-silica particles for high performance lithium battery anodes. Powder Technol 284:365–370

    CAS  Google Scholar 

  35. 35.

    Yoshifumi I, Kazunori H, Kaveh E, Katsuhiko S, Guo QX, Horita ZJ, Toshihiro A, David JS (2014) Fabrication of nanograined silicon by high-pressure torsion. J Mater Sci 49:6565–6569

    Google Scholar 

  36. 36.

    Fu Y, Manthiram A (2013) Silicon nanoparticles supported on graphitic carbon paper as a hybrid anode for Li-ion batteries. Nano Energy 2:1107–1112

    CAS  Google Scholar 

  37. 37.

    Chen HD, Hou XH, Chen FM, Wang SF, Wu B, Ru Q, Qin HQ, Xia YC (2018) Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature. Carbon 130:433–440

    CAS  Google Scholar 

  38. 38.

    Hu XQ, Huang SM, Hou XH, Chen HD, Qin HQ, Ru Q, Chu BL (2018) A double core-shell structure silicon carbon composite anode material for a Lithium ion battery. Silicon 10:1443–1450

    CAS  Google Scholar 

  39. 39.

    Yu WJ, Liu C, Hou PX, Zhang L, Shan XY, Li F, Cheng HM (2015) Lithiation of silicon nanoparticles confined in carbon nanotubes. ACS Nano 9:5063–5071

    CAS  PubMed  Google Scholar 

  40. 40.

    Chen HD, Wang ZL, Hou XH, Fu LJ, Wang SF, Hu XQ, Qin HQ, Wu YP, Ru Q, Liu X, Hu SJ (2017) Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode. Electrochim Acta 249:113–121

    CAS  Google Scholar 

  41. 41.

    Kim N, Chae S, Ma J, Ko M, Cho J (2017) Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Nat Commun 8:812

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Park E, Kim J, Chung DJ, Park MS, Kim H, Kim JH (2016) Si/SiOx-conductive polymer core-shell nanospheres with an improved conducting path preservation for lithium-ion battery. ChemSusChem 9:2754–2758

    CAS  PubMed  Google Scholar 

  43. 43.

    Matthew TM, Lee SW, Justin TH, Brian AK, Wang CM, William DN, Cui Y (2012) In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett 13:758–764

    Google Scholar 

  44. 44.

    Yang H, Huang S, Huang X, Fan FF, Liang WT, Liu XH, Chen LQ, Huang JY, Li J, Zhu T, Zhang SL (2012) Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Lett 12:1953–1958

    CAS  PubMed  Google Scholar 

  45. 45.

    Zheng Y, Lin N, Xu TJ, Qian YT (2018) TiO2 coated Si/C interconnected microsphere with stable framework and interface for high-rate lithium storage. Chem Eng J 347:214–222

    Google Scholar 

  46. 46.

    Xu X, Dou ZF, Gu EL, Si L, Zhou XS, Bao JC (2017) Uniformly-distributed Sb nanoparticles in ionic liquid-derived nitrogen-enriched carbon for highly reversible sodium storage. J Mater Chem A 5:13411–13420

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangxi Innovation-Driven Development Project (AA17204022, AA18118001), the Science and Technology Plan of China Nonferrous Group (2016KJJH03) and the Scientific and Technological Plan of Guilin City (201607010322).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huarui Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Xu, H., Qin, H. et al. Silicon Nanoparticles Preparation by Induction Plasma Technology for Li-ion Batteries Anode Material. Silicon 12, 2259–2269 (2020). https://doi.org/10.1007/s12633-019-00320-4

Download citation

Keywords

  • Induction plasma process
  • Silicon nanoparticles
  • Particle size
  • Si@Graphite composites
  • Li-ion batteries
  • Anode