Numerical Simulation on Design of Temperature Control for Side Heater in Directional Solidification System of Multi-Crystalline Silicon

Abstract

In this paper, the transient numerical simulation was used to study the effects of temperature variation in three ways (the open downward parabola, the straight line and the open upward parabola) of side heater in multi-crystalline silicon directional solidification system during solidification period. The melt-crystal (m/c) interface, thermal field and thermal stress during directional solidification of polysilicon have been simulated. The results show that in the process of solidification, compared with the open downward parabola and straight line temperature variation, the temperature change of the side heater depends on the open upward parabola can better control the horizontal and vertical temperature difference in polysilicon, making the deflection of m/c interfaces smaller. Smaller thermal stress distribution can be obtained from the middle stage to the end of solidification while temperature change of side heater according to upward parabola, which is beneficial to improve the quality of polysilicon ingots.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Nguyen THT, Chen J-C, Hu C et al (2017) Numerical analysis of thermal stress and dislocation density distributions in large size multi-crystalline silicon ingots during the seeded growth process[J]. J Cryst Growth 468:316–320. https://doi.org/10.1016/j.jcrysgro.2016.09.061

    CAS  Article  Google Scholar 

  2. 2.

    Tang YN, Shen HF (2010) Simulation for temperature distribution of polycrystalline silicon casting process[J]. Journal of System Simulation 22(7):1614–1617. https://doi.org/10.16182/j.cnki.joss.2010.07.007

    CAS  Article  Google Scholar 

  3. 3.

    Smirnova OV, Mamedov VM, Kalaev VV (2014) Numerical modeling of stress and dislocations in Si ingots grown by seed-directional solidification and comparison to experimental data[J]. Cryst Growth Des 14:5532–5536. https://doi.org/10.1021/cg500736j

    CAS  Article  Google Scholar 

  4. 4.

    Hu C, Chen JC, Nguyen THT et al (2018) Optimization of heat transfer during the directional solidification process of 1600 kg silicon feedstock[J]. J Cryst Growth 484:70–77. https://doi.org/10.1016/j.jcrysgro.2017.12.042

    CAS  Article  Google Scholar 

  5. 5.

    Wu ZY, Zhong GX, Zhou XC et al (2016) Upgrade of the hot zone for large-size high-performance multi-crystalline silicon ingot casting[J]. J Cryst Growth 441:58–63. https://doi.org/10.1016/j.jcrysgro.2016.02.012

    CAS  Article  Google Scholar 

  6. 6.

    Lin T, Sun YH, Duan CY et al (2016) Influence of soaking time on polycrystalline silicon purification during directional solidification[J]. J Mater Sci Eng 34(4):643–646. https://doi.org/10.14136/j.cnki.issn1673-2812.2016.04.027

    Article  Google Scholar 

  7. 7.

    Xu M, Zheng L, Zhang H et al (2011) Thermal system design and optimization of an industrial silicon directional solidification system[J]. J Cryst Growth 318:288–292. https://doi.org/10.1016/j.jcrysgro.2010.10.102

    CAS  Article  Google Scholar 

  8. 8.

    Kesavan V, Srinivasan M, Ramasamy P (2018) The influence of multiple-heaters on the reduction of impurities in mc-Si for directional solidification[J]. Silicon:1–10. https://doi.org/10.1007/s12633-018-9928-7

  9. 9.

    Anbu G, Srinivasan M, Ramasamy P (2018) Modelling on modified heater design of DS system for improving the quality of mc-silicon ingot[J]. Silicon:1–8. https://doi.org/10.1007/s12633-018-9928-7

  10. 10.

    Chen W, Wu Z, Zhong G et al (2016) Optimization of heat transfer by adjusting power ratios between top and side heaters for casting high-performance multi-crystalline silicon ingots[J]. J Cryst Growth 451:155–160. https://doi.org/10.1016/j.jcrysgro.2016.07.031

    CAS  Article  Google Scholar 

  11. 11.

    Li Z, Liu L, Zhang Y et al (2016) Influence of crucible thermal conductivity on crystal growth in an industrial directional solidification process for silicon ingots[J]. International Journal of Photoenergy. https://doi.org/10.1155/2016/8032709

  12. 12.

    Lu XD, Zhang P, Wu YQ et al (2015) Thermal field optimization and improvement of directional solidification of polycrystalline silicon ingot furnace quartz crucible[J]. Journal of Synthetic Crystal 44(11):3179–3183. https://doi.org/10.16553/j.cnki.issn1000-985x.2015.11.044

    CAS  Article  Google Scholar 

  13. 13.

    Fang HS, Wang S, Zhou L et al (2012) Influence of furnace design on the thermal stress during directional solidification of multicrystalline silicon[J]. J Cryst Growth 346:5–11. https://doi.org/10.1016/j.jcrysgro.2012.02.032

    CAS  Article  Google Scholar 

  14. 14.

    Wang S, Zhang QJ, Tian J et al (2015) Influence of inlet gas velocity bottom insulated plate movement on thermal stresses of silicon ingot during cooling process[J]. China Sciencepaper 10(11):1329–1333

    Google Scholar 

  15. 15.

    Yang X, Ma W, Lv G et al (2014) A modified vacuum directional solidification system of multicrystalline silicon based on optimizing for heat transfer[J]. J Cryst Growth 400:7–14. https://doi.org/10.1016/j.jcrysgro.2014.04.025

    CAS  Article  Google Scholar 

  16. 16.

    Li J, Chen Y, Hong R (2016) Modeling and optimization of the feedstock melting for industrial photovoltaic multi-crystalline silicon ingot[J]. Sol Energy 139:108–115. https://doi.org/10.1016/j.solener.2016.09.024

    CAS  Article  Google Scholar 

  17. 17.

    Chen XJ, Nakano S, Liu LJ et al (2008) Study on thermal stress in a silicon ingot during a unidirectional solidification process[J]. J Cryst Growth 310:4330–4335. https://doi.org/10.1016/j.jcrysgro.2008.07.027

    CAS  Article  Google Scholar 

  18. 18.

    Chen X, Nakano S, Kakimoto K (2010) Three-dimensional global analysis of thermal stress and dislocations in a silicon ingot during a unidirectional solidification process with a square crucible[J]. J Cryst Growth 312:3261–3266. https://doi.org/10.1016/j.jcrysgro.2010.08.045

    CAS  Article  Google Scholar 

  19. 19.

    Nguyen THT, Liao S-H, Chen J-C et al (2016) Effects of the hot zone design during the growth of large size multi-crystalline silicon ingots by the seeded directional solidification process[J]. J Cryst Growth 452:27–34. https://doi.org/10.1016/j.jcrysgro.2015.12.045

    CAS  Article  Google Scholar 

  20. 20.

    Kvande R, Mjos O, Ryningen B (2005) Growth rate and impurity distribution in multicrystalline silicon for solar cells[J]. Mater Sci Eng A 413-414:545–549. https://doi.org/10.1016/j.msea.2005.09.035

    CAS  Article  Google Scholar 

  21. 21.

    Zhang FY, Rao SL, Wang FH et al (2017) Research Progress on the solid-liquid Interface in the crystal growth of polycrystalline silicon[J]. Journal of Synthetic Crystal 46(10):2077–2082. https://doi.org/10.16553/j.cnki.issn1000-985x.2017.10.038

    CAS  Article  Google Scholar 

  22. 22.

    Nagarajan SG, Srinivasan M, Aravinth K et al (2018) Improving heat transfer properties of DS furnace by the geometrical modifications for enhancing the multi crystalline silicon ingot (mc-Si) quality using transient simulation[J]. Silicon:1–11. https://doi.org/10.1007/s12633-018-9870-8

  23. 23.

    Yu Q, Liu L, Ma W et al (2012) Local design of the hot-zone in an industrial seeded directional solidification furnace for quasi-single crystalline silicon ingots[J]. J Cryst Growth 358:5–11. https://doi.org/10.1016/j.jcrysgro.2012.07.039

    CAS  Article  Google Scholar 

  24. 24.

    Luo T, LV Q, Ma W et al (2013) Numerical and experimental study of vacuum directional solidification purification process for SoG-Si in metallurgicalroute[J]. J Cryst Growth 384:122–128. https://doi.org/10.1016/j.jcrysgro.2013.09.020

    CAS  Article  Google Scholar 

  25. 25.

    Zhou B, Chen W, Dong H et al (2017) Effect of side insulation on stress and dislocation in the multi-crystalline silicon ingot during cooling process[J]. Journal of Materials Science and Engineering B:89–98. https://doi.org/10.17265/2161-6221/2017.5-6.001

  26. 26.

    Chen XJ, Nakano S, Liu LJ et al (2008) Study on thermal stress in a silicon ingot during a unidirectional solidification process[J]. J Cryst Growth 310:4330–4335. https://doi.org/10.1016/j.jcrysgro.2008.07.027

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC (No.51664047), The landing project of Jiangxi province of science and technology(20123BBE50116), the research project of Jiangxi provincial department of education science and technology (GJJ161200、GJJ161199).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fayun Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, B., Luo, Y., Rao, S. et al. Numerical Simulation on Design of Temperature Control for Side Heater in Directional Solidification System of Multi-Crystalline Silicon. Silicon 12, 2179–2187 (2020). https://doi.org/10.1007/s12633-019-00310-6

Download citation

Keywords

  • Interfacial morphology
  • Directional solidification
  • Thermal field
  • Thermal stress