Skip to main content
Log in

Exploring Adjacent Pentagons in Non-IPR and SW Defective Si60 and Si70 Silicon Fullerenes: a Computational Study

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

We have applied DFT calculations to investigate the effect of the adjacent pentagons (APs) on the geometries, stabilities, and electronic structures of the non-IPR isomers of Si60 and Si70 fullerenes containing three adjacent pentagon pairs, Si60(D3) and Si70(C2v), and the SW defective Si60 and Si70 fullerenes with four AP pairs. These non-IPR isomers of Si60 and Si70 cages are more stable than their IPR ones. Natural bond orbital analyses and electrostatic potential surfaces indicate the charge densities are more localized at the pentagon-pentagon edges of the non-IPR fullerenes, which increase by going to the charged ones. Based on our results, the SW rearrangement process in the Si60 and Si70 silicon fullerenes is exothermic. A silylene-like transition state along a stepwise reaction path is characterized at the B3LYP/6-311 + G* level of theory. The barrier for the SW rearrangement of Si60 fullerene is obtained to be 5.36 eV which is smaller than that reported for SW rearrangement of C60 fullerene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kroto HW, Heath JR, O’ Brien SC, Curl RF, Smalley RE (1985) Nature 318:162–162

    Article  CAS  Google Scholar 

  2. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Nature 347:354–358

    Article  Google Scholar 

  3. Teo BK, Sun XH (2007) Chem Rev 107:1454–1532

    Article  CAS  Google Scholar 

  4. Zdetsis AD (2010) Silicon fullerenes. In: Sattler KD (ed) Handbook of nanophysics. Taylor and Francis, New York

  5. Nagase S, Kobayashi K (1991) Chem Phys Lett 187:291–294

    Article  Google Scholar 

  6. Piqueras MC, Crespo R, Orti E, Tomas F (1993) Chem Phys Lett 213:509–513

    Article  CAS  Google Scholar 

  7. Crespo R, Piqueras MC, Tomas F (1996) Synth Met 77:13–15

    Article  CAS  Google Scholar 

  8. Leszczynski J, Yanov I (1999) J Phys Chem 103:396–401

    Article  CAS  Google Scholar 

  9. Khan FS, Broughton JQ (1991) Phys Rev B 43:11754–11761

    Article  CAS  Google Scholar 

  10. Song J, Ulloa SE, Drabold DA (1996) Phys Rev B 53:8042–8051

    Article  CAS  Google Scholar 

  11. Li BX, Cao PL (2001) J Phys: Condens Matter 13:10865–10872

    CAS  Google Scholar 

  12. Chen ZF, Jiao HJ, Seifert G, Horn AHC, Yu DK, Clark T, Thiel W, Schleyer PVR (2003) J Comput Chem 24:948–953

    Article  CAS  Google Scholar 

  13. Sun Q, Wang Q, Jena P, Rao BK, Kawazoe Y (2003) Phys Rev Lett 90:135503–1–135503-4

    Google Scholar 

  14. Zhang D, Guo G, Liu C (2006) J Phys Chem B 110:14619–14622

    Article  CAS  Google Scholar 

  15. Jia J, Lai Y-N, Wu H-S, Jiao H (2009) J Phys Chem C 113:6887–6890

    Article  CAS  Google Scholar 

  16. Boon KT, Huang S-P, Zhang RQ, Li W-K (2009) Coord Chem Rev 253:2935–2958

    Article  Google Scholar 

  17. Zhao J, Ma L, Wen B (2007) J Phys: Condens Matter 19:226208

    Google Scholar 

  18. Li B-x, P-l Cao, Que D-L (2000) Phys Rev B 61:1685

    Article  CAS  Google Scholar 

  19. Wang L, Li D, Yang D (2006) Mol Simul 32:663

    Article  CAS  Google Scholar 

  20. Chen ZF, Jiao HJ, Seifert G, Horn AHC, Yu DK, Clark T, Thiel W, Schleyer PVR (2003) J Comput Chem 24:948–953

    Article  CAS  Google Scholar 

  21. Beck SM (1987) J Chem Phys 87:4233

    Article  CAS  Google Scholar 

  22. Kumar V, Kawazoe Y (2001) Phys Rev Lett 87:045503

    Article  CAS  Google Scholar 

  23. Zdetsis AD (2007) Phys Rev B 75:085409

    Article  Google Scholar 

  24. Zdetsis AD (2007) Phys Rev B 76:075402

    Article  Google Scholar 

  25. Kumar V, Kawazoe Y (2003) Phys Rev Lett 90:055502

    Article  Google Scholar 

  26. Zdetsis AD (2007) Phys Rev B 75:085409

    Article  Google Scholar 

  27. Zdetsis AD (2009) Phys Rev B 80:195417

    Article  Google Scholar 

  28. Zdetsis AD (2011) J Phys Chem C 115:14507

    Article  CAS  Google Scholar 

  29. Saunders M (1991) Science 253:330

    Article  CAS  Google Scholar 

  30. Karttunen AJ, Linnolahti M, Pakkanen TA (2007) J Phys Chem C 111:2545

    Article  CAS  Google Scholar 

  31. Linnolahti M, Karttunen AJ, Pakkanen TA (2006) Chem Phys Chem 7:1661

    Article  CAS  Google Scholar 

  32. Zdetsis AD (2009) Phys Rev B 79:195437

    Article  Google Scholar 

  33. Karttunen AJ, Linnolahti M, Pakkanen TA (2007) J Phys Chem C 111:2545–2547

    Article  CAS  Google Scholar 

  34. Stone AJ, Wales DJ (1986) Chem Phys Lett 128:501–503

    Article  CAS  Google Scholar 

  35. Nimlos MR, Filley J, McKinnon JT (2005) J Phys Chem A 109:9896–9903

    Article  CAS  Google Scholar 

  36. Zhao Y, Lin Y, Yakobson BI (2003) Phys Rev B 68:233403

    Article  Google Scholar 

  37. Samsonidze GG, Samsonidze GG, Yakobson BI (2002) Phys Rev Lett 88:065501

    Article  Google Scholar 

  38. Tersoff J (1988) Phys Rev B 37:6991–7000

    Article  CAS  Google Scholar 

  39. Brenner DW (1990) Phys Rev B 42:9458–9471

    Article  CAS  Google Scholar 

  40. Ghafouri R, Anafcheh M (2013) Superlattices and Microstruct 55:33–44

    Article  CAS  Google Scholar 

  41. Ghafouri R, Anafcheh M, Zahedi M (2014) Physica E 58:94–100

    Article  CAS  Google Scholar 

  42. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  43. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  44. Hariharan PC, Pople JA (1974) Mol Phys 27:209–214

    Article  CAS  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S, Pople J A (1998) Gaussian 98. Gaussian Inc., Pittsburgh

    Google Scholar 

  46. Zhang Y, Wu A, Xu X, Yan Y (2007) J Phys Chem A 111:9431–9437

    Article  CAS  Google Scholar 

  47. Barman S, Sen P, Das GP (2008) J Phys Chem C 112:19963–19968

    Article  CAS  Google Scholar 

  48. Anafcheh M, Ghafouri R (2014) J Clust Sci 25:505–515

    Article  CAS  Google Scholar 

  49. Zhang D, Ma C, Liu C (2007) J Phys Chem C 111:17099–17103

    Article  CAS  Google Scholar 

  50. Neretin IS, Lyssenko KA, Antipin MY, Slovokhotov YL, Boltalina OV, Troshin PA, Lukonin AY, Sidorov LN, Taylor R (2000) Angew Chem Int Ed 39:3273–3276

    Article  CAS  Google Scholar 

  51. Murray JS, Seminario JM, Concha MC, Politzer P (1992) Int J Quantum Chem 44:113–122

    Article  Google Scholar 

  52. Popov AA, Dunsch L (2007) J Am Chem Soc 129:11835–11849

    Article  CAS  Google Scholar 

  53. Bettinger HF, Yakobson BI, Scuseria GE (2003) J Am Chem Soc 125:5572–5580

    Article  CAS  Google Scholar 

  54. Reetz MT (1972) Angew Chem 84:161–162

    Article  Google Scholar 

  55. Murry RL, Strout DL, Scuseria GE (1994) Int J Mass Spectrom Ion Processes 138:113–131

    Article  CAS  Google Scholar 

  56. Qi X-L, Hughes T L, Zhang S-C (2008) Phys Rev B 78:195424

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghafouri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 33.5 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anafcheh, M., Naderi, F., Khodadadi, Z. et al. Exploring Adjacent Pentagons in Non-IPR and SW Defective Si60 and Si70 Silicon Fullerenes: a Computational Study. Silicon 11, 323–329 (2019). https://doi.org/10.1007/s12633-018-9994-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9994-x

Keywords

Navigation