Skip to main content
Log in

Simulation Analysis of Direction Solidification Process with Fixed Partition Block to Grow Multi Crystalline Silicon Ingot

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The simulation of Directional Solidification (DS) process without partition block and with partition block has been carried to grow multi crystalline silicon (mc-Si) ingot and the results were compared and analyzed. The melt-crystal interface shape, power consumption and dislocation densities for both furnaces have been analyzed. Their results revealed that the partition block largely influences the shape of the melt-crystal interface of the mc-Si ingot and consumes lower power than the DS furnace without partition block. The partition block in the DS furnace separates the heater region from the heat dissipation region and prevents radiant heat energy loss about 10 to 12 KWh during the solidification process. However the dislocation density in the mc-Si ingot grown with partition block DS furnace is slightly increased due to the higher radial temperature gradient. Since the dislocation density in both cases has not increased higher than 10− 8 1/m2 it will not affect the solar cell conversion efficiency. Here the effect of partition block on melt-crystal interface shape, dislocation density and power consumption in the DS furnace has been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao B, Nakano S, Harada H, Miyamura Y, Sekiguchi T, Kakimoto K (2012) J Cryst Growth 352:47–52. https://doi.org/10.1016/j.jcrysgro.2011.11.084

    Article  CAS  Google Scholar 

  2. Sopory B, Rupnowski P, Mehta V, Budhraja V, Johnston S, Call N, Moulinho H, Al-Jassim M (2009) Conference paper NRWL/CP-520-45012

  3. Sanmugavel S, Srinivasan M, Aravinth K, Ramasamy P (2016) AIP Conf Proc 1731:110033. https://doi.org/10.1063/1.4948054

    Article  CAS  Google Scholar 

  4. Ding C, Huang M, Zhong G, Ming L, Huang X (2014) J Cryst Growth 387:73–80

    Article  CAS  Google Scholar 

  5. Aravindan G, Srinivasan M, Aravinth K, Ramasamy P (2016) AIP Conf Proc 1731:110040

    Article  Google Scholar 

  6. Chen L, Dai B (2012) J Cryst Growth 354:86–92

    Article  CAS  Google Scholar 

  7. Miyazawa H, Liu LJ, Kakimoto K (2008) J Cryst Growth 310:1142

    Article  CAS  Google Scholar 

  8. Miyazawa H, Liu LJ, Hisamatsu S, Kakimoto K (2008) J Cryst Growth 310:1034

    Article  CAS  Google Scholar 

  9. Schmid E, Poklad A, Heinze V, Meier D, Patzold O, Stelter M (2015) J Cryst Growth 416:1–7

    Article  CAS  Google Scholar 

  10. Ding C, Huang M, Zhong G, Liu L, Huang X (2014) Cryst Res Technol 49(5):405–413

    Article  CAS  Google Scholar 

  11. Yang X, Lv G, Ma W, Xue H, Chen D (2016) Appl Therm Eng 93:731–741

    Article  Google Scholar 

  12. Wu Z, Zhong G, Zhang Z, Zhou X, Wang Z, Huang X (2015) J Cryst Growth 426:110–116

    Article  CAS  Google Scholar 

  13. Autruffe A, Hagen VS, Arnberg L, Di Sabatino M (2015) J Cryst Growth 411:12–18. https://doi.org/10.1016/j.jcrysgro.2014.10.054

    Article  CAS  Google Scholar 

  14. Chen XJ, Nakano S, Liu LJ, Kakimoto K (2008) J Cryst Growth 310:4330–4335. https://doi.org/10.1016/j.jcrysgro.2008.07.027

    Article  CAS  Google Scholar 

  15. Kvande R, Mjos O, Ryningen B (2005) Mater Sci Eng A 413–414:5455–5549. https://doi.org/10.1016/j.msea.2005.09.035

    Article  CAS  Google Scholar 

  16. Yu Q, Liu L, Ma W, Zhong G, Huang X (2012) J Cryst Growth 358:5–11. https://doi.org/10.1016/j.jcrysgro.2012.07.039

    Article  CAS  Google Scholar 

  17. Ganesan NS, Manickam S, Karuppanan A, Perumalsamy R (2016) Int J Mater Res 107:1–9. https://doi.org/10.3139/146.111375

    Article  CAS  Google Scholar 

  18. Luo T, Lv Q, Ma W, Wei K, Yang X, Li S (2013) J Cryst Growth 384:122–128. https://doi.org/10.1016/j/jcrysgro.2013.09.02

    Article  CAS  Google Scholar 

  19. Ma W, Zhong G, Sun L, Yu Q, Huang X, Liu L (2012) Sol Energy Mater Sol Cells 100:231–238

    Article  CAS  Google Scholar 

  20. Smirnova OV, Mamedov VM, Kalaev VV (2014) Cryst Growth Design 14(11):5532–5536

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Ministry of New and Renewable Energy (MNRE), the Government of India (Order No: 31/58/2013-2014/PVSE2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ramasamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarajan, S.G., Anbu, G., Srinivasan, M. et al. Simulation Analysis of Direction Solidification Process with Fixed Partition Block to Grow Multi Crystalline Silicon Ingot. Silicon 11, 401–406 (2019). https://doi.org/10.1007/s12633-018-9851-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9851-y

Keywords

Navigation