Skip to main content
Log in

Synthesis of Cu-10Sn/SiC Metal Matrix Composites and Experimental Investigation of its Adhesive Wear Behaviour

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The objective is to fabricate Cu-10Sn alloy and its composites reinforced with varying wt% of SiC (5, 10 and 15) to investigate its dry sliding wear behaviour. Microstructural analysis for composites revealed well dispersed SiC particles within matrix except for 15 wt% SiC composite, where agglomeration took place. Amongst all composites and alloy, 10 wt% of SiC composite had better hardness (144 HV). The tribological analysis using Pin-on-Disc tribometer for all alloy and composites revealed increase in wear rate with increase in load and distance for all combinations of parameters (load, sliding distance, and sliding velocity). Worn surface analysis concluded that the wear rate decreased with increase in velocity for both 5 and 10 wt% SiC composite due to formation of Mechanically Mixed Layer. The composite with 10 wt% SiC showed enhanced wear resistance and hence can be used for tribological applications like bearings and bushes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma A, Kumar S, Singh G, Pandey OP (2015) Effect of particle size on wear behaviour of Al–garnet composites. PartSci Technol 33:234–239

    Article  CAS  Google Scholar 

  2. Kainer KU (2006) Metal matrix composites: custom-made materials for automotive and aerospace engineering. Wiley, New York

    Book  Google Scholar 

  3. Chelladurai SJS, Arthanari R, Krishnamoorthy K, Selvaraj KS, Govindan P (2017) Effect of copper coating and reinforcement orientation on mechanical properties of LM6 aluminium alloy composites reinforced with steel mesh by squeeze casting. Trans Indian Inst Met:1–8

  4. Choubey G, Suneetha L, Pandey KM (2018) Composite materials used in Scramjet- a review. Mater Today 5:1321–1326

    Article  Google Scholar 

  5. Nithesh R, Radhika N, Shiam Sunder S (2017) Mechanical properties and adhesive scuffing wear behavior of stir cast Cu–Sn–Ni/Si3N4 composites. J Tribol 24:1052–1060

    Google Scholar 

  6. Yuan GA, Jie JC, Zhang PC, Zhang J, Wang TM, Li TJ (2015) Wear behavior of high strength and high conductivity Cu alloys under dry sliding. Trans Nonferrous Metals Soc China 25:2293–2300

    Article  Google Scholar 

  7. Schubert T, Trindade B, Weißgärber T, Kieback B (2008) Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications. Mater Sci Eng: A 475:39–44

    Article  Google Scholar 

  8. Zhan Y, Zhang G (2004) Friction and wear behavior of copper matrix composites reinforced with SiC and graphite particles. Tribol Lett 17:91–98

    Article  CAS  Google Scholar 

  9. Natarajan N, Vijayarangan S, Rajendran I (2016) Wear behaviour of A356/25SiCp aluminium matrix composites sliding against automobile friction material. Wear 261:812–822

    Article  Google Scholar 

  10. Liu ZY, Xiao BL, Wang WG, Ma ZY (2012) Singly dispersed carbon nanotube/aluminium composites fabricated by powder metallurgy combined with friction stir processing. Carbon 50:1843–1852

    Article  CAS  Google Scholar 

  11. Tu JP, Wang NY, Yang YZ, Qi WX, Liu F, Zhang XB, Lu HM, Liu MS (2002) Preparation and properties of TiB2 nanoparticle reinforced copper matrix composites by in situ processing. Mater Lett 52:448–452

    Article  CAS  Google Scholar 

  12. Sahin Y (2003) Wear behaviour of aluminium alloy and its composites reinforced by SiC particles using statistical analysis. Mater Des 24:95–103

    Article  CAS  Google Scholar 

  13. Shabani M, Paydar MH, Moshksar MM (2014) Fabrication and densification enhancement of SiC-particulate-reinforced copper matrix composites prepared via the sinter-forging process. Int J Min Met Mater 21:934–940

    Article  CAS  Google Scholar 

  14. Sapate S, Uttarwar A, Rathod R, Paretkar R (2009) Analyzing dry sliding wear behaviour of copper matrix composites reinforcedwith pre-coated SiCp particles. Mater Des 30:376–386

    Article  CAS  Google Scholar 

  15. Radhika N, Raghu R (2015) Dry Sliding Wear Behaviour of Aluminium Al–Si12Cu/TiB2 Metal Matrix Composite Using Response Surface Methodology. Tribol Lett 59:2

    Article  Google Scholar 

  16. Zhou SM, Zhang XB, Ding ZP, Min CY, Xu GL, Zhu WM (2007) Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique. Compos Part A Appl Sci Manuf 38:301–306

    Article  Google Scholar 

  17. Barmouz M, Asadi P, Givi MB, Taherishargh M (2011) Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: effect of SiC particles size and volume fraction. Mater Sci Eng: A 528:1740–1749

    Article  Google Scholar 

  18. Kumar B, Parmar A, Ghoghalia D, Yadav M, Bhaduwala S (2015) Wear analysis of aluminium based composites by stir casting process: a. Wear 4:8

    Google Scholar 

  19. Vora P, Mumtaz K, Todd I, Hopkinson N (2015) AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting. Addit Manuf 7:12–19

    Article  CAS  Google Scholar 

  20. Gnjidić Z, Boz̆ić D, Mitkov M (2001) The influence of SiC particles on the compressive properties of metal matrix composites. Mater Charact 47:129–138

    Article  Google Scholar 

  21. Ezatpour HR, Sajjadi SA, Sabzevar MH, Huang Y (2014) Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting. Mater Des 55:921–928

    Article  CAS  Google Scholar 

  22. Radhika N (2017) Mechanical properties and abrasive wear behaviour of functionally graded Al-Si12Cu/Al2O3 metal matrix composite. Trans Indian Inst Met 70:145–157

    Article  CAS  Google Scholar 

  23. Hall PJ, Mirzaeian M, Fletcher SI, Sillars FB, Rennie AJ, Shitta-Bey GO, Wilson G, Cruden A, Carter R (2010) Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ Sci 3:1238–1251

    Article  CAS  Google Scholar 

  24. Radhika N, Raghu R (2015) Evaluation of dry sliding wear characteristics of LM 13 Al/B4C composites. Tribol Ind 37:20–28

    Google Scholar 

  25. Korkut MH (2004) Effect of particulate reinforcement on wear behaviour of aluminium matrix composites. Mater Sci Technol 20:73–81

    Article  CAS  Google Scholar 

  26. Zhan Y, Zhang G (2003) The effect of interfacial modifying on the mechanical and wear properties of SiCp/Cu composites. Mater Lett 57:4583–4591

    Article  CAS  Google Scholar 

  27. Hong E, Kaplin B, You T, Suh MS, Kim YS, Choe H (2011) Tribological properties of copper alloy-based composites reinforced with tungsten carbide particles. Wear 270:591–597

    Article  CAS  Google Scholar 

  28. VenkatPrasat S, Subramanian R, Radhika N, Anandavel B (2011) Dry sliding wear and friction studies on AlSi10Mg–fly ash–graphite hybrid metal matrix composites using Taguchi method. Tribol Mater Surf Interfaces 5:72–81

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Radhika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhika, N., Karthik, R., Gowtham, S. et al. Synthesis of Cu-10Sn/SiC Metal Matrix Composites and Experimental Investigation of its Adhesive Wear Behaviour. Silicon 11, 345–354 (2019). https://doi.org/10.1007/s12633-018-9848-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9848-6

Keywords

Navigation