, Volume 11, Issue 1, pp 209–219 | Cite as

Effect of Ge Mole Fraction on Electrical Parameters of Si1−xGex Source Step-FinFET and its Application as an Inverter

  • Rajesh SahaEmail author
  • Brinda Bhowmick
  • Srimanta Baishya
Original Paper


This paper proposes device geometry of Fin-Field-Effect-Transistor (FinFET) with a step-fin. The source region of the proposed device consists of Si1−xGexand the effects of Ge-mole fraction on various electrical parameters are premeditated. The values of electron mobility, drive current, transconductance increases, and short channel effects (SCEs) decreases as the percentage of Ge in Si1−xGexincreases. However, the energy bandgap and gate capacitance reduce with the increase of Ge mole fraction in Si1−xGex. A minimum SS being 64.77 mV/decade, lower DIBL of 35.31 mV/V, and low value of threshold voltage 0.26793 V are obtained for Lg = 40 nm at Ge mole fraction (x) = 1. A better Ion/Ioff ratio of 3.11×108 is achieved for Lg = 40 nm at mole fraction (x) = 0.3 and VDS = 0.5 V. Complementary versions of the proposed device are used in the circuit of a digital inverter (VDD = 0.5 V), and the impact of Ge content on DC and transient analysis are observed. As Ge mole fractions increases, average gate delay decreases, high noise margin (NMH) increases, and low noise margin (NML) falls off. A minimum value of average gate delay 0.9 ps, has been achieved for Lg = 40 nm at Ge content (x)= 0.2.


FinFET Inverter Mole fraction Si1−xGex Step-FinFET 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank Council of Scientific and Industrial Research, Govt. of India, Project (Sanction No. 22(0737)/17/EMR-II), for providing required facilities for carrying out the work.


  1. 1.
    Roy K, Mukhopadhyay S, Meimand HM (2003) Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc IEEE 91(2):305–327. CrossRefGoogle Scholar
  2. 2.
    Yeo YC, King TJ, Hu C (2003) MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations. IEEE Trans Electron Dev 50(4):1027–1035. CrossRefGoogle Scholar
  3. 3.
    Poiroux T, Vinet M, Faynet O, Widiez J, Lolvier J, Previtali B, Ernst T, Deleonibus S (2006) Multigate silicon MOSFETs for 45 nm node and beyond. Solid-State Electron 50:18–23. CrossRefGoogle Scholar
  4. 4.
    Orouji AA, Rahimian M (2012) Leakage current reduction in nanoscale fully-depleted SOI MOSFETs with modified current mechanism. Curr Appl Phys 12:1366–1371. CrossRefGoogle Scholar
  5. 5.
    Bhattacharya D, Jha N K (2014) FinFETs: from devices to architectures. Hindawi Publishing Corporation, Advances in Electronics, Article ID 365689, 21pp.
  6. 6.
    Fasarakis N, Tsormpatzoglou A, Tasis DH, Pappas I, Papathanasiou K, Bucher M, Ghibaudo G, Dimitriadis CA (2012) Compact model of drain current in short-channel triple-gate FinFETs. IEEE Trans Electron Devices 59(7).
  7. 7.
    Tang S, Chang L, Lindert N et al (2001) FinFET—a quasiplanar double-gate MOSFET, Proceedings of the international of solid-state circuits conference, pp 118–119Google Scholar
  8. 8.
    Narendar V, Mishra RA (2015) Analytical modeling and simulation of multigate FinFET devices and the impact of high-k dielectrics on short channel effects (SCEs). Superlattices Microstruct 85:357–369. CrossRefGoogle Scholar
  9. 9.
    Tripathi SL, Mishra R, Mishra RA (2012) Characteristic comparison of connected DG FINFET, TG FINFET and independent Gate FINFET on 32 nm technology. In: 2nd international conference on power, control and embedded systems, pp 1–7.
  10. 10.
    Ritzenthaler R, Lime F, Iñiguez B, Faynot O, Cristoloveanu S (2010) 3D analytical modelling of subthreshold characteristics in Pi-gate FinFET transistors. In: 2010 Proceedings of the European solid-state device research conference (ESSDERC).
  11. 11.
    Leung G, Chui CO (2011) Variability of inversion-mode and junctionless FinFETs due to line edge roughness. IEEE Electron Device Lett 32(11):1489–1491. CrossRefGoogle Scholar
  12. 12.
    Yeh MS, Wu YC, Hung MF, Liu KC, Jhan YR, Chen LC, Chang CY (2013) Fabrication, characterization and simulation of Ω-gate twin poly-Si FinFET nonvolatile memory. Nanoscale Res Lett 8:331. CrossRefGoogle Scholar
  13. 13.
    Mehrad M, Orouji AA (2010) Partially cylindrical fin field-effect transistor: a novel device for nanoscale applications. IEEE Trans Device Mater Reliab 10:271–275. CrossRefGoogle Scholar
  14. 14.
    Das R, Goswami R, Baishya S (2016) Tri-gate heterojunction SOI Ge-FinFETs. Superlattices Microstruc 91:51–61. CrossRefGoogle Scholar
  15. 15.
    Kumar MJ, Venkataraman V, Nawal S (2007) Impact of strain or Ge content on the threshold voltage of nanoscale strained-Si/SiGe bulk MOSFETs. IEEE Trans Device Mater Reliab 7(1):181–187. CrossRefGoogle Scholar
  16. 16.
    Singh TV, Kumar MJ (2008) Effect of the Ge mole fraction on the formation of a conduction path in cylindrical strained-silicon-on-SiGe MOSFETs. Superlattices Microstruc 44:79–85. CrossRefGoogle Scholar
  17. 17.
    Venkataraman V, Nawal S, Kumar MJ (2007) Compact analytical threshold-voltage model of nanoscale fully depleted strained-Si on silicon–germanium-on-insulator (SGOI) MOSFETs. IEEE Trans Electron Devices 54 (3):554–562. CrossRefGoogle Scholar
  18. 18.
    Wee MFMR, Dehzangi A, Bollaert S, Wichmann N, Majlis B Y (2013) Gate length variation effect on performance of gate-first self-aligned In0.53Ga0.47As. MOSFET 8(12):e82731. Google Scholar
  19. 19.
    Chang WT, Lin YS, Shih CT (2015) Threshold voltage and transconductance shifting reliance on strained-SiGe channel dimension. Solid-State Electron 110:10–13. CrossRefGoogle Scholar
  20. 20.
    Lin CL, Hsiao PH, Yeh WK, Liu HW, Yang SR, Chen YT, Chen KM, Liao WS (2013) Effects of fin width on device performance and reliability of double-gate n-type FinFETs. IEEE Trans Electron Devices 60(11):3639–3644. CrossRefGoogle Scholar
  21. 21.
    Yeo YC, Lu Q, Lee WC, King TJ, Hu C, Wang X, Guo X, Ma TP (2000) Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric. IEEE Trans Electron Devices 21 (11):540–542. CrossRefGoogle Scholar
  22. 22.
    Ma TP (1998) Making silicon nitride film a viable gate dielectric. Trans Electron Devices 45(3):680–690. CrossRefGoogle Scholar
  23. 23.
    Semiconductor Industry Association (SIA) (2005) International Technology Roadmap for Semiconductors (ITRS). Available online:
  24. 24.
    Baidya A, Krishnan V, Baishya S, Lenka TR (2015) Effect of thin gate dielectrics and gate materials on simulated device characteristics of 3D double gate JNT. Superlattices Microstruc 77:209–218. CrossRefGoogle Scholar
  25. 25.
    Sentaurus Device User Guide (2011) Synopsys, Inc.Google Scholar
  26. 26.
    Chindalore G, Hareland SA, Jallepalli S, Tasch AF, Maziar Jr CM, Chia VKF, Smith S (1997) Experimental determination of threshold voltage shifts due to quantum mechanical effects in MOS electron and hole inversion layers. IEEE Electron Device Lett 8(5):206–208. CrossRefGoogle Scholar
  27. 27.
    Fasarakis N, Tsormpatzoglou A, Tassis DH, Dimitriadis CA, Papathanasiou K, Jomaah J, Ghibaudo G (2011) Analytical uni?ed threshold voltage model of short-channel FinFETs and implementation. Solid-State Electron 64:34–41. CrossRefGoogle Scholar
  28. 28.
    Thompson SE, Armstrong M, Auth C, Cea S, Chau R, Glass G, Hoffman T, Klaus J, Ma Z, Mcintyre B, Murthy A et al (2004) A logic nanotechnology featuring strained-silicon. IEEE Electron Device Lett 25(4):191–193. CrossRefGoogle Scholar
  29. 29.
    Thompson SE, Armstrong M, Auth C, Alavi M, Buehler M, Chau R, Cea S, Ghani T et al (2004) A 90-nm logic technology featuring strained-silicon. IEEE Trans Electron Devices 51(11):1790–1797. CrossRefGoogle Scholar
  30. 30.
    Lim JS, Thompson SE, Fossum JG (2004) Comparison of threshold-voltage shifts for uniaxial and biaxial tensile-stressed n-MOSFETs. IEEE Electron Device Lett 25(11):731–733. CrossRefGoogle Scholar
  31. 31.
    Zhang W, Fossum JG (2005) On the threshold voltage of strained-Si-Si1−xGex MOSFETs. IEEE Trans Electron Devices 52(2):263–268. CrossRefGoogle Scholar
  32. 32.
    Numata T, Mizuno T, Tezuka T, Koga J, Takagi S (2005) Control of threshold-voltage and short-channel effects in ultrathin strained-SOI CMOS devices. IEEE Trans Electron Devices 52(8):1780–1786. CrossRefGoogle Scholar
  33. 33.
    Rahimian M, Orouji AA, Aminbeidokhti A (2013) A novel deep submicron SiGe-on-insulator (SGOI) MOSFET with modi?ed channel band energy for electrical performance improvement. Curr Appl Phys 13:779–784. CrossRefGoogle Scholar
  34. 34.
    Balamurugan NB, Sankaranarayanan K, John MF (2009) 2D transconductance to drain current ratio modeling of dual material surrounding gate nanoscale SOI MOSFETs. J Semicond Sci Technol 9(2):110–116. CrossRefGoogle Scholar
  35. 35.
    Han MH, Chang CY, Chen HB, Cheng YC, Wu Y-C (2013) Device and circuit performance estimation of junctionless bulk FinFETs. IEEE Trans Electron Devices 60(6):1807–1813. CrossRefGoogle Scholar
  36. 36.
    Rai S, Sahu J, Dattatray W, Mishra RA, Tiwari S (2012) Modelling, design, and performance comparison of triple gate cylindrical and partially cylindrical FinFETs for low-power applications. International Scholarly Research Network, vol 2012, Article ID 827452, 7.

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Rajesh Saha
    • 1
    Email author
  • Brinda Bhowmick
    • 1
  • Srimanta Baishya
    • 1
  1. 1.Department of Electronics & Communication EngineeringNational Institute of Technology SilcharAssamIndia

Personalised recommendations