Skip to main content
Log in

Effect of Ge Mole Fraction on Electrical Parameters of Si1−xGex Source Step-FinFET and its Application as an Inverter

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper proposes device geometry of Fin-Field-Effect-Transistor (FinFET) with a step-fin. The source region of the proposed device consists of Si1−xGexand the effects of Ge-mole fraction on various electrical parameters are premeditated. The values of electron mobility, drive current, transconductance increases, and short channel effects (SCEs) decreases as the percentage of Ge in Si1−xGexincreases. However, the energy bandgap and gate capacitance reduce with the increase of Ge mole fraction in Si1−xGex. A minimum SS being 64.77 mV/decade, lower DIBL of 35.31 mV/V, and low value of threshold voltage 0.26793 V are obtained for Lg = 40 nm at Ge mole fraction (x) = 1. A better Ion/Ioff ratio of 3.11×108 is achieved for Lg = 40 nm at mole fraction (x) = 0.3 and VDS = 0.5 V. Complementary versions of the proposed device are used in the circuit of a digital inverter (VDD = 0.5 V), and the impact of Ge content on DC and transient analysis are observed. As Ge mole fractions increases, average gate delay decreases, high noise margin (NMH) increases, and low noise margin (NML) falls off. A minimum value of average gate delay 0.9 ps, has been achieved for Lg = 40 nm at Ge content (x)= 0.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roy K, Mukhopadhyay S, Meimand HM (2003) Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc IEEE 91(2):305–327. https://doi.org/10.1109/JPROC.2002.808156

    Article  CAS  Google Scholar 

  2. Yeo YC, King TJ, Hu C (2003) MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations. IEEE Trans Electron Dev 50(4):1027–1035. https://doi.org/10.1109/TED.2003.812504

    Article  CAS  Google Scholar 

  3. Poiroux T, Vinet M, Faynet O, Widiez J, Lolvier J, Previtali B, Ernst T, Deleonibus S (2006) Multigate silicon MOSFETs for 45 nm node and beyond. Solid-State Electron 50:18–23. https://doi.org/10.1016/j.sse.2005.10.049

    Article  CAS  Google Scholar 

  4. Orouji AA, Rahimian M (2012) Leakage current reduction in nanoscale fully-depleted SOI MOSFETs with modified current mechanism. Curr Appl Phys 12:1366–1371. https://doi.org/10.1016/j.cap.2012.03.029

    Article  Google Scholar 

  5. Bhattacharya D, Jha N K (2014) FinFETs: from devices to architectures. Hindawi Publishing Corporation, Advances in Electronics, Article ID 365689, 21pp. https://doi.org/10.1155/2014/365689

  6. Fasarakis N, Tsormpatzoglou A, Tasis DH, Pappas I, Papathanasiou K, Bucher M, Ghibaudo G, Dimitriadis CA (2012) Compact model of drain current in short-channel triple-gate FinFETs. IEEE Trans Electron Devices 59(7). https://doi.org/10.1109/TED.2012.2195318

  7. Tang S, Chang L, Lindert N et al (2001) FinFET—a quasiplanar double-gate MOSFET, Proceedings of the international of solid-state circuits conference, pp 118–119

  8. Narendar V, Mishra RA (2015) Analytical modeling and simulation of multigate FinFET devices and the impact of high-k dielectrics on short channel effects (SCEs). Superlattices Microstruct 85:357–369. https://doi.org/10.1016/j.spmi.2015.06.004

    Article  CAS  Google Scholar 

  9. Tripathi SL, Mishra R, Mishra RA (2012) Characteristic comparison of connected DG FINFET, TG FINFET and independent Gate FINFET on 32 nm technology. In: 2nd international conference on power, control and embedded systems, pp 1–7. https://doi.org/10.1109/ICPCES.2012.6508037

  10. Ritzenthaler R, Lime F, Iñiguez B, Faynot O, Cristoloveanu S (2010) 3D analytical modelling of subthreshold characteristics in Pi-gate FinFET transistors. In: 2010 Proceedings of the European solid-state device research conference (ESSDERC). https://doi.org/10.1109/ESSDERC.2010.5618179

  11. Leung G, Chui CO (2011) Variability of inversion-mode and junctionless FinFETs due to line edge roughness. IEEE Electron Device Lett 32(11):1489–1491. https://doi.org/10.1109/LED.2011.2164233

    Article  Google Scholar 

  12. Yeh MS, Wu YC, Hung MF, Liu KC, Jhan YR, Chen LC, Chang CY (2013) Fabrication, characterization and simulation of Ω-gate twin poly-Si FinFET nonvolatile memory. Nanoscale Res Lett 8:331. https://doi.org/10.1186/1556-276X-8-331

    Article  Google Scholar 

  13. Mehrad M, Orouji AA (2010) Partially cylindrical fin field-effect transistor: a novel device for nanoscale applications. IEEE Trans Device Mater Reliab 10:271–275. https://doi.org/10.1109/TDMR.2010.2046663

    Article  Google Scholar 

  14. Das R, Goswami R, Baishya S (2016) Tri-gate heterojunction SOI Ge-FinFETs. Superlattices Microstruc 91:51–61. https://doi.org/10.1016/j.spmi.2015.12.039

    Article  CAS  Google Scholar 

  15. Kumar MJ, Venkataraman V, Nawal S (2007) Impact of strain or Ge content on the threshold voltage of nanoscale strained-Si/SiGe bulk MOSFETs. IEEE Trans Device Mater Reliab 7(1):181–187. https://doi.org/10.1109/TDMR.2006.889269

    Article  CAS  Google Scholar 

  16. Singh TV, Kumar MJ (2008) Effect of the Ge mole fraction on the formation of a conduction path in cylindrical strained-silicon-on-SiGe MOSFETs. Superlattices Microstruc 44:79–85. https://doi.org/10.1016/j.spmi.2008.02.007

    Article  CAS  Google Scholar 

  17. Venkataraman V, Nawal S, Kumar MJ (2007) Compact analytical threshold-voltage model of nanoscale fully depleted strained-Si on silicon–germanium-on-insulator (SGOI) MOSFETs. IEEE Trans Electron Devices 54 (3):554–562. https://doi.org/10.1109/TED.2006.890369

    Article  CAS  Google Scholar 

  18. Wee MFMR, Dehzangi A, Bollaert S, Wichmann N, Majlis B Y (2013) Gate length variation effect on performance of gate-first self-aligned In0.53Ga0.47As. MOSFET 8(12):e82731. https://doi.org/10.1371/journal.pone.0082731

    Google Scholar 

  19. Chang WT, Lin YS, Shih CT (2015) Threshold voltage and transconductance shifting reliance on strained-SiGe channel dimension. Solid-State Electron 110:10–13. https://doi.org/10.1016/j.sse.2014.11.012

    Article  CAS  Google Scholar 

  20. Lin CL, Hsiao PH, Yeh WK, Liu HW, Yang SR, Chen YT, Chen KM, Liao WS (2013) Effects of fin width on device performance and reliability of double-gate n-type FinFETs. IEEE Trans Electron Devices 60(11):3639–3644. https://doi.org/10.1109/TED.2013.2281296

    Article  CAS  Google Scholar 

  21. Yeo YC, Lu Q, Lee WC, King TJ, Hu C, Wang X, Guo X, Ma TP (2000) Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric. IEEE Trans Electron Devices 21 (11):540–542. https://doi.org/S0741-3106(00)09273-9

    Article  CAS  Google Scholar 

  22. Ma TP (1998) Making silicon nitride film a viable gate dielectric. Trans Electron Devices 45(3):680–690. https://doi.org/S0018-9383(98)01670-0

    Article  CAS  Google Scholar 

  23. Semiconductor Industry Association (SIA) (2005) International Technology Roadmap for Semiconductors (ITRS). Available online: http://www.itrs.net/i

  24. Baidya A, Krishnan V, Baishya S, Lenka TR (2015) Effect of thin gate dielectrics and gate materials on simulated device characteristics of 3D double gate JNT. Superlattices Microstruc 77:209–218. https://doi.org/10.1016/j.spmi.2014.11.007

    Article  CAS  Google Scholar 

  25. Sentaurus Device User Guide (2011) Synopsys, Inc.

  26. Chindalore G, Hareland SA, Jallepalli S, Tasch AF, Maziar Jr CM, Chia VKF, Smith S (1997) Experimental determination of threshold voltage shifts due to quantum mechanical effects in MOS electron and hole inversion layers. IEEE Electron Device Lett 8(5):206–208. https://doi.org/S0741-3106(97)03503-9

    Article  Google Scholar 

  27. Fasarakis N, Tsormpatzoglou A, Tassis DH, Dimitriadis CA, Papathanasiou K, Jomaah J, Ghibaudo G (2011) Analytical uni?ed threshold voltage model of short-channel FinFETs and implementation. Solid-State Electron 64:34–41. https://doi.org/10.1016/j.sse.2011.06.049

    Article  CAS  Google Scholar 

  28. Thompson SE, Armstrong M, Auth C, Cea S, Chau R, Glass G, Hoffman T, Klaus J, Ma Z, Mcintyre B, Murthy A et al (2004) A logic nanotechnology featuring strained-silicon. IEEE Electron Device Lett 25(4):191–193. https://doi.org/10.1109/LED.2004.825195

    Article  CAS  Google Scholar 

  29. Thompson SE, Armstrong M, Auth C, Alavi M, Buehler M, Chau R, Cea S, Ghani T et al (2004) A 90-nm logic technology featuring strained-silicon. IEEE Trans Electron Devices 51(11):1790–1797. https://doi.org/10.1109/TED.2004.836648

    Article  CAS  Google Scholar 

  30. Lim JS, Thompson SE, Fossum JG (2004) Comparison of threshold-voltage shifts for uniaxial and biaxial tensile-stressed n-MOSFETs. IEEE Electron Device Lett 25(11):731–733. https://doi.org/10.1109/LED.2004.837581

    Article  Google Scholar 

  31. Zhang W, Fossum JG (2005) On the threshold voltage of strained-Si-Si1−xGex MOSFETs. IEEE Trans Electron Devices 52(2):263–268. https://doi.org/10.1109/TED.2004.842716

    Article  CAS  Google Scholar 

  32. Numata T, Mizuno T, Tezuka T, Koga J, Takagi S (2005) Control of threshold-voltage and short-channel effects in ultrathin strained-SOI CMOS devices. IEEE Trans Electron Devices 52(8):1780–1786. https://doi.org/10.1109/TED.2005.851840

    Article  CAS  Google Scholar 

  33. Rahimian M, Orouji AA, Aminbeidokhti A (2013) A novel deep submicron SiGe-on-insulator (SGOI) MOSFET with modi?ed channel band energy for electrical performance improvement. Curr Appl Phys 13:779–784. https://doi.org/10.1016/j.cap.2012.12.005

    Article  Google Scholar 

  34. Balamurugan NB, Sankaranarayanan K, John MF (2009) 2D transconductance to drain current ratio modeling of dual material surrounding gate nanoscale SOI MOSFETs. J Semicond Sci Technol 9(2):110–116. https://doi.org/10.5573/JSTS.2009.9.2.110

    Article  Google Scholar 

  35. Han MH, Chang CY, Chen HB, Cheng YC, Wu Y-C (2013) Device and circuit performance estimation of junctionless bulk FinFETs. IEEE Trans Electron Devices 60(6):1807–1813. https://doi.org/10.1109/TED.2013.2256137

    Article  Google Scholar 

  36. Rai S, Sahu J, Dattatray W, Mishra RA, Tiwari S (2012) Modelling, design, and performance comparison of triple gate cylindrical and partially cylindrical FinFETs for low-power applications. International Scholarly Research Network, vol 2012, Article ID 827452, 7. https://doi.org/10.5402/2012/827452

Download references

Acknowledgements

The authors would like to thank Council of Scientific and Industrial Research, Govt. of India, Project (Sanction No. 22(0737)/17/EMR-II), for providing required facilities for carrying out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, R., Bhowmick, B. & Baishya, S. Effect of Ge Mole Fraction on Electrical Parameters of Si1−xGex Source Step-FinFET and its Application as an Inverter. Silicon 11, 209–219 (2019). https://doi.org/10.1007/s12633-018-9846-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9846-8

Keywords

Navigation