Skip to main content
Log in

Using Silica Coated Nanoscale Zerovalent Particles for the Reduction of Chlorinated Ethylenes

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The impact of a silica coating on the degradation potential of nanoscale zerovalent iron (nZVI) particles toward a mixture of chlorinated ethylenes is presented. The newly employed stabilization method for nZVI, based on silica deposition from saturated sodium silicate water glass, produces nZVI particles with a similar reactivity as non-stabilized particles. Moreover the removal rate constant kM of trichloroethylene (0.1740 L g−1 d−1 Fe0) and cis-dichloroethylene (0.1045 L g−1 d−1Fe0) was significantly improved (almost by a factor of 2) for stabilized nZVI. X-ray photoelectron spectroscopy (XPS) and Wavelength Dispersive X-ray Fluorescence (WDXRF) analyzes revealed a high durability of silica coating and the coating left at least half of nZVI surface silica free for reaction for more than 5 weeks. The silica coating did not affect the surface composition of silica coated nZVI which was confirmed by the very similar distribution of degradation products and corrosion products (Fe3O4, FeOOH) as was found for non-coated nanoparticles. An enhanced reactivity supplemented with a stable corrosion properties indicates that silica coated nZVI has potential as an efficient remediation agent toward chlorinated ethylenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48. https://doi.org/10.1016/S1748-0132(06)70048-2

    Article  Google Scholar 

  2. Liu YQ, Lowry GV (2006) Effect of particle age (Fe-o content) and solution pH on NZVI reactivity: H-2 evolution and TCE dechlorination. Environ Sci Technol 40(19):6085–6090. https://doi.org/10.1021/Es060685o

    Article  CAS  Google Scholar 

  3. Noubactep C, Care S, Crane R (2012) Nanoscale metallic iron for environmental remediation: prospects and limitations. Water Air Soil Poll 223(3):1363–1382. https://doi.org/10.1007/s11270-011-0951-1

    Article  CAS  Google Scholar 

  4. Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State 31(4):111–122. https://doi.org/10.1080/10408430601057611

    Article  CAS  Google Scholar 

  5. Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41(1):284–290. https://doi.org/10.1021/Es061349a

    Article  CAS  Google Scholar 

  6. Tosco T, Papini MP, Viggi CC, Sethi R Nanoscale zerovalent iron particles for groundwater remediation: a review. J Clean Prod (0). https://doi.org/10.1016/j.jclepro.2013.12.026

    Article  CAS  Google Scholar 

  7. Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16(11):2187–2193. https://doi.org/10.1021/Cm0218108

    Article  CAS  Google Scholar 

  8. Yang GCC, Tu HC, Hung CH (2007) Stability of nanoiron slurries and their transport in the subsurface environment. Sep Purif Technol 58(1):166–172. https://doi.org/10.1016/j.seppur.2007.07.018

    Article  CAS  Google Scholar 

  9. Kanel SR, Choi H (2007) Transport characteristics of surface-modified nanoscale zero-valent iron in porous media. Water Sci Technol 55(1-2):157–162. https://doi.org/10.2166/Wst.2007.002

    Article  CAS  Google Scholar 

  10. Hydutsky BW, Mack EJ, Beckerman BB, Skluzacek JM, Mallouk TE (2007) Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environ Sci Technol 41(18):6418–6424. https://doi.org/10.1021/Es0704075

    Article  CAS  Google Scholar 

  11. Saleh N, Phenrat T, Sirk K, Dufour B, Ok J, Sarbu T, Matyiaszewski K, Tilton RD, Lowry GV (2005) Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Lett 5(12):2489–2494. https://doi.org/10.1021/Nl0518268

    Article  CAS  Google Scholar 

  12. Saleh N, Sirk K, Liu YQ, Phenrat T, Dufour B, Matyjaszewski K, Tilton RD, Lowry GV (2007) Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environ Eng Sci 24(1):45–57. https://doi.org/10.1089/ees.2007.24.45

    Article  CAS  Google Scholar 

  13. Comba S, Dalmazzo D, Santagata E, Sethi R (2011) Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media. J Hazard Mater 185(2-3):598–605. https://doi.org/10.1016/j.jhazmat.2010.09.060

    Article  CAS  Google Scholar 

  14. Tiraferri A, Sethi R (2009) Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J Nanopart Res 11(3):635–645. https://doi.org/10.1007/s11051-008-9405-0

    Article  CAS  Google Scholar 

  15. Sirk KM, Saleh NB, Phenrat T, Kim H-J, Dufour B, Ok J, Golas PL, Matyjaszewski K, Lowry GV, Tilton RD (2009) Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models. Environ Sci Technol 43(10):3803–3808. https://doi.org/10.1021/es803589t

    Article  CAS  Google Scholar 

  16. O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122. https://doi.org/10.1016/j.advwatres.2012.02.005

    Article  Google Scholar 

  17. Quinn J, Geiger C, Clausen C, Brooks K, Coon C, O’Hara S, Krug T, Major D, Yoon WS, Gavaskar A, Holdsworth T (2005) Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ Sci Technol 39(5):1309–1318. https://doi.org/10.1021/Es0490018

    Article  CAS  Google Scholar 

  18. Ni XM, Zheng Z, Hu X, Xiao XK (2010) Silica-coated iron nanocubes: preparation, characterization and application in microwave absorption. J Colloid Interf Sci 341(1):18–22. https://doi.org/10.1016/j.jcis.2009.09.017

    Article  CAS  Google Scholar 

  19. Zheng TH, Zhan JJ, He JB, Day C, Lu YF, Mcpherson GL, Piringer G, John VT (2008) Reactivity characteristics of nanoscale zerovalent iron-silica composites for trichloroethylene remediation. Environ Sci Technol 42(12):4494–4499. https://doi.org/10.1021/Es702214x

    Article  CAS  Google Scholar 

  20. Honetschlagerova L, Janouskovcova P, Kubal M, Sofer Z (2015) Enhanced colloidal stability of nanoscale zero valent iron particles in the presence of sodium silicate water glass. Environ Technol 36(3):358–365. https://doi.org/10.1080/09593330.2014.977825

    Article  CAS  Google Scholar 

  21. Elliott DW, Zhang W-X (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35(24):4922–4926. https://doi.org/10.1021/es0108584

    Article  CAS  Google Scholar 

  22. Tee Y-H, Grulke E, Bhattacharyya D (2005) Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water. Ind Eng Chem Res 44(18):7062–7070. https://doi.org/10.1021/ie050086a

    Article  CAS  Google Scholar 

  23. Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic Nickel-Iron nanoparticles. Chem Mater 14(12):5140–5147. https://doi.org/10.1021/cm020737i

    Article  CAS  Google Scholar 

  24. Bergna HE, Firment LE, Swartzfager DG (2006) Dense silica coatings on micro and nanoparticles by deposition of monosilicic acid. In: Colloidal silica: fundamentals and applications. CRC Taylor & Francis, Boca Raton, pp 701–711

  25. Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C, Sen T (2004) Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater 284:145–160. https://doi.org/10.1016/j.jmmm.2004.06.032

    Article  CAS  Google Scholar 

  26. Stober W, Fink A, Bohn E (1968) Controlled Growth of Monodisperse Silica Spheres in Micron Size Range. J Colloid Interf Sci 26(1):62–&. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  27. He F, Zhao DY, Liu JC, Roberts CB (2007) Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46(1):29–34. https://doi.org/10.1021/Ie0610896

    Article  CAS  Google Scholar 

  28. Phenrat T, Liu YQ, Tilton RD, Lowry GV (2009) Adsorbed polyelectrolyte coatings decrease fe-0 nanoparticle reactivity with TCE in water: conceptual model and mechanisms. Environ Sci Technol 43(5):1507–1514. https://doi.org/10.1021/Es802187d

    Article  CAS  Google Scholar 

  29. Klausen J, Vikesland PJ, Kohn T, Burris DR, Ball WP, Roberts AL (2003) Longevity of granular iron in groundwater treatment processes: solution composition effects on reduction of organohalides and nitroaromatic compounds. Environ Sci Technol 37(6):1208–1218. https://doi.org/10.1021/Es025965s

    Article  CAS  Google Scholar 

  30. Kohn T, Kane SR, Fairbrother DH, Roberts AL (2003) Investigation of the inhibitory effect of silica on the degradation of 1,1,1-trichloroethane by granular iron. Environ Sci Technol 37(24):5806–5812. https://doi.org/10.1021/Es034495e

    Article  CAS  Google Scholar 

  31. Kohn T, Roberts AL (2006) The effect of silica on the degradation of organohalides in granular iron columns. J Contam Hydrol 83(1-2):70–88. https://doi.org/10.1016/j.jconhyd.2005.10.010

    Article  CAS  Google Scholar 

  32. Doong RA, Chen KT, Tsai HC (2003) Reductive dechlorination of carbon tetrachloride and tetrachloroethylene by zerovalent silicon-iron reductants. Environ Sci Technol 37(11):2575–2581. https://doi.org/10.1021/Es020978r

    Article  CAS  Google Scholar 

  33. Guo J, Jiang DJ, Wu Y, Zhou P, Lan YQ (2011) Degradation of methyl orange by Zn(0) assisted with silica gel. J Hazard Mater 194:290–296. https://doi.org/10.1016/j.jhazmat.2011.07.099

    Article  CAS  Google Scholar 

  34. Oh YJ, Song H, Shin WS, Choi SJ, Kim YH (2007) Effect of amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron. Chemosphere 66(5):858–865. https://doi.org/10.1016/j.chemosphere.2006.06.034

    Article  CAS  Google Scholar 

  35. Velimirovic M, Larsson P, Simons Q, Bastiaens L (2013) Reactivity screening of microscale zerovalent irons and iron sul?des towards different CAHs under standardized experimental conditions. J Hazard Mater 252-253C:204–212. https://doi.org/10.1016/j.jhazmat.2013.02.047

    Article  Google Scholar 

  36. Arnold WA, Ball WP, Roberts AL (1999) Polychlorinated ethane reaction with zero-valent zinc: pathways and rate control. J Contam Hydrol 40(2):183–200. https://doi.org/10.1016/S0169-7722(99)00045-5

    Article  CAS  Google Scholar 

  37. Carniato L, Simons Q, Schoups G, Seuntjens P, Bastiaens L (2014) Corrosion rate estimations of microscale zerovalent iron particles via direct hydrogen production measurements. https://doi.org/10.1016/jjhazmat201401034

  38. Johnson TL, Scherer MM, Tratnyek PG (1996) Kinetics of halogenated organic compound degradation by iron metal. Environ Sci Technol 30(8):2634–2640. https://doi.org/10.1021/es9600901

    Article  CAS  Google Scholar 

  39. Miller DJ, Biesinger MC, McIntyre NS (2002) Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: one possible mechanism for surface contamination?. Surf Interface Anal 33(4):299–305. https://doi.org/10.1002/sia.1188

    Article  CAS  Google Scholar 

  40. Stumm W, Huper H, Champlin RL (1967) Formulation of polysilicates as determined by coagulation effects. Environ Sci Technol 1(3):221–227. https://doi.org/10.1021/es60003a004

    Article  CAS  Google Scholar 

  41. Davis CC, Chen HW, Edwards M (2002) Modeling silica sorption to iron hydroxide. Environ Sci Technol 36(4):582–587. https://doi.org/10.1021/Es010996t

    Article  CAS  Google Scholar 

  42. Chen J, Xiu Z, Lowry GV, Alvarez PJJ (2011) Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Res 45(5):1995–2001. https://doi.org/10.1016/j.watres.2010.11.036

    Article  CAS  Google Scholar 

  43. Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211-212(0):112–125. https://doi.org/10.1016/j.jhazmat.2011.11.073

    Article  CAS  Google Scholar 

  44. Dries J, Bastiaens L, Springael D, Agathos SN, Diels L (2005) Combined removal of chlorinated ethenes and heavy metals by zerovalent iron in batch and continuous flow column systems. Environ Sci Technol 39(21):8460–8465. https://doi.org/10.1021/Es050251d

    Article  CAS  Google Scholar 

  45. Honetschlägerová L, Janouškovcová P, Kubal M, Sofer Z Using silica for stabilization of nanoscale zero valent iron. in review

  46. P. J (2014) Reactivity of nano-scale zero-valent iron for in situ remediation of chlorinated ethylenes Dissertation, University of Chemistry and Technology Prague, Prague

  47. Arnold WA, Roberts AL (2000) Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(O) particles. Environ Sci Technol 34(9):1794–1805. https://doi.org/10.1021/Es990884q

    Article  CAS  Google Scholar 

  48. Liu YQ, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005) TCE Dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39(5):1338–1345. https://doi.org/10.1021/Es049195r

    Article  CAS  Google Scholar 

  49. Elsner M, Chartrand M, Vanstone N, Couloume GL, Lollar BS (2008) Identifying abiotic chlorinated ethene degradation: characteristic isotope patterns in reaction products with nanoscale zero-valent iron. Environ Sci Technol 42(16):5963–5970. https://doi.org/10.1021/Es8001986

    Article  CAS  Google Scholar 

  50. Reardon EJ, Fagan R, Vogan JL, Przepiora A (2008) Anaerobic corrosion reaction kinetics of nanosized iron. Environ Sci Technol 42(7):2420–2425. https://doi.org/10.1021/Es0712120

    Article  CAS  Google Scholar 

  51. HonetschlÄgerová L, Janoušxkovcová P, Kubal M (2016) Enhanced transport of Si-coated nanoscale zero-valent iron particles in porous media. Environ Technol 37(12):1530–1538. https://doi.org/10.1080/09593330.2015.1120784

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Technology Agency of the Czech Republic under grant TA02020654.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Honetschlägerová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honetschlägerová, L., Janouškovcová, P., Velimirovic, M. et al. Using Silica Coated Nanoscale Zerovalent Particles for the Reduction of Chlorinated Ethylenes. Silicon 10, 2593–2601 (2018). https://doi.org/10.1007/s12633-018-9795-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9795-2

Keywords

Navigation