Skip to main content
Log in

Incorporation of Silicon Carbide and Alumina Particles into the Melt of A356 via Electroless Metallic Coating Followed by Stir Casting

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

It is known that Cu and Ni coating layers provide different surface energy functionalities when coated onto ceramic particles with a range of particle sizes. This is known to be due to some extent to the kinetic aspects in the bath during the electroless deposition process. In this study, A356-based composites reinforced by 1.5 wt. % large Al2O3 and 1.5 wt. % fine SiC particles were fabricated by a two-step process, semi-solid stir casting followed by rolling. For wettability improvement, the Ni and Cu layers were coated on both the ceramic particles, separately. The results indicated that the best mechanical properties were obtained for a composite, which contained 1.5 % wt. SiC and 1.5 % wt. Al2O3, in which SiC particles were coated by the copper and alumina particles were coated by the nickel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prasad S, Asthana R (2004) Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol Lett 17:445–453

    Article  CAS  Google Scholar 

  2. Javidani M, Larouche D (2014) Application of cast Al–Si alloys in internal combustion engine components. Int Mater Rev 59:132–158

    Article  CAS  Google Scholar 

  3. Kaufman JG, Rooy EL (2004) Aluminum alloy castings: properties, processes, and applications. ASM International, Materials Park

    Google Scholar 

  4. Naik SK, Sanjay S, Math V, Matti R (2016) Connecting rod made using particulate reinforced aluminum metal matrix composite—a review. J Emerg Technol Innov Res 2:228–233

    Google Scholar 

  5. Boostani AF, Mousavian RT, Tahamtan S, Yazdani S, Khosroshahi RA, Wei D et al (2016) Solvothermal-assisted graphene encapsulation of SiC nanoparticles: a new horizon toward toughening aluminium matrix nanocomposites. Mater Sci Eng A 653:99–107

    Article  CAS  Google Scholar 

  6. Mousavian RT, Khosroshahi RA, Yazdani S, Brabazon D, Boostani A (2016) Fabrication of aluminum matrix composites reinforced with nano-to micrometer-sized SiC particles. Mater Des 89:58–70

    Article  CAS  Google Scholar 

  7. Soltani S, Khosroshahi RA, Mousavian RT, Jiang Z-Y, Boostani AF, Brabazon D (2015) Stir casting process for manufacture of Al–SiC composites. Rare Met 36:581–590

    Article  CAS  Google Scholar 

  8. Paes M, Zoqui E (2005) Semi-solid behavior of new Al–Si–Mg alloys for thixoforming. Mater Sci Eng A 406:63–73

    Article  CAS  Google Scholar 

  9. El-Mahallawi I, Shash Y, Eigenfeld K, Mahmoud T, Ragaie R, Shash A et al (2010) Influence of nanodispersions on strength–ductility properties of semisolid cast A356 Al alloy. Mater Sci Technol 26:1226–1231

    Article  CAS  Google Scholar 

  10. Seo P, Kang C, Lee S (2009) A study on reheating characteristics for thixo die casting process with electromagnetic stirring and extruded aluminum alloys and their mechanical properties. Int J Adv Manuf Technol 43:482–499

    Article  Google Scholar 

  11. Heidarzadeh A, Mousavian RT, Khosroshahi RA, Afkham YA, Pouraliakbar H (2015) Empirical model to predict mass gain of cobalt electroless deposition on ceramic particles using response surface methodology. Rare Met 36:209–219

    Article  CAS  Google Scholar 

  12. B. M. M. C. via Stir. A review on properties of aluminium based metal matrix composites via stir casting

  13. Hashim J, Looney L, Hashmi M (2001) The enhancement of wettability of SiC particles in cast aluminium matrix composites. J Mater Process Technol 119:329–335

    Article  CAS  Google Scholar 

  14. Ureña A, Escalera M, Gil L (2002) Oxidation barriers on SiC particles for use in aluminium matrix composites manufactured by casting route: mechanisms of interfacial protection. J Mater Sci 37:4633–4643

    Article  Google Scholar 

  15. Xue W, Jin Q, Zhu Q, Hua M, Ma Y (2009) Anti-corrosion microarc oxidation coatings on SiC p/AZ31 magnesium matrix composite. J Alloys Compd 482:208–212

    Article  CAS  Google Scholar 

  16. Beigi Khosroshahi N, Azari Khosroshahi R, Taherzadeh Mousavian R, Brabazon D (2014) Electroless deposition (ED) of copper coating on micron-sized SiC particles. Surf Eng 30:747–751

    Article  CAS  Google Scholar 

  17. Roy S, Nataraj B, Suwas S, Kumar S, Chattopadhyay K (2012) Accumulative roll bonding of aluminum alloys 2219/5086 laminates: microstructural evolution and tensile properties. Mater Des 36:529–539

    Article  CAS  Google Scholar 

  18. Ceschini L, Minak G, Morri A (2009) Forging of the AA2618/20vol.% Al 2 O 3p composite: effects on microstructure and tensile properties. Compos Sci Technol 69:1783–1789

    Article  CAS  Google Scholar 

  19. Humphreys F, Miller W, Djazeb M (1990) Microstructural development during thermomechanical processing of particulate metal-matrix composites. Mater Sci Technol 6:1157–1166

    Article  CAS  Google Scholar 

  20. Haghdadi N, Zarei-Hanzaki A, Abedi H, Sabokpa O (2012) The effect of thermomechanical parameters on the eutectic silicon characteristics in a non-modified cast A356 aluminum alloy. Mater Sci Eng A 549:93–99

    Article  CAS  Google Scholar 

  21. Ramu G, Bauri R (2009) Effect of equal channel angular pressing (ECAP) on microstructure and properties of Al–SiC p composites. Mater Des 30:3554–3559

    Article  CAS  Google Scholar 

  22. Sabirov I, Kolednik O, Valiev R, Pippan R (2005) Equal channel angular pressing of metal matrix composites: effect on particle distribution and fracture toughness. Acta Mater 53:4919– 4930

    Article  CAS  Google Scholar 

  23. Boostani AF, Mousavian RT, Tahamtan S, Yazdani S, Khosroshahi RA, Wei D et al (2015) Graphene sheets encapsulating SiC nanoparticles: a roadmap towards enhancing tensile ductility of metal matrix composites. Mater Sci Eng A 648:92–103

    Article  CAS  Google Scholar 

  24. Boostani AF, Yazdani S, Mousavian RT, Tahamtan S, Khosroshahi RA, Wei D et al (2015) Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites. Mater Des 88:983–989

    Article  CAS  Google Scholar 

  25. Shen M, Wang X, Li C, Zhang M, Hu X, Zheng M et al (2013) Effect of bimodal size SiC particulates on microstructure and mechanical properties of AZ31B magnesium matrix composites. Mater Des 52:1011–1017

    Article  CAS  Google Scholar 

  26. Lee H, Hong S (2003) Pressure infiltration casting process and thermophysical properties of high volume fraction SiCp/Al metal matrix composites. Mater Sci Technol 19:1057–1064

    Article  CAS  Google Scholar 

  27. Molina J, Narciso J, Weber L, Mortensen A, Louis E (2008) Thermal conductivity of Al–SiC composites with monomodal and bimodal particle size distribution. Mater Sci Eng A 480:483– 488

    Article  CAS  Google Scholar 

  28. Molina J, Pinero E, Narciso J, García-Cordovilla C, Louis E (2005) Liquid metal infiltration into ceramic particle preforms with bimodal size distributions. Curr Opin Solid State Mater Sci 9:202–210

    Article  CAS  Google Scholar 

  29. Kumar S, Panwar RS, Pandey O (2013) Effect of dual reinforced ceramic particles on high temperature tribological properties of aluminum composites. Ceram Int 39:6333–6342

    Article  CAS  Google Scholar 

  30. Deng K, Shi J, Wang C, Wang X, Wu Y, Nie K et al (2012) Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite. Compos A: Appl Sci Manuf 43:1280–1284

    Article  CAS  Google Scholar 

  31. Wu K, Deng K, Nie K, Wu Y, Wang X, Hu X et al (2010) Microstructure and mechanical properties of SiCp/AZ91 composite deformed through a combination of forging and extrusion process. Mater Des 31:3929–3932

    Article  CAS  Google Scholar 

  32. Nie K, Wang X, Xu L, Wu K, Hu X, Zheng M (2012) Effect of hot extrusion on microstructures and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite. J Alloys Compd 512:355–360

    Article  CAS  Google Scholar 

  33. Kheirifard R, Khosroshahi NB, Khosroshahi RA, Mousavian RT, Brabazon D (2016) Fabrication of A356-based rolled composites reinforced by Ni–P-coated bimodal ceramic particles. Proc Inst Mech Eng L: J Mater Des Appl 1464420716649631

  34. Khosroshahi NB, Mousavian RT, Khosroshahi RA, Brabazon D (2015) Mechanical properties of rolled A356 based composites reinforced by Cu-coated bimodal ceramic particles. Mater Des 83:678

    Article  CAS  Google Scholar 

  35. Brabazon D, Browne D, Carr A (2002) Mechanical stir casting of aluminium alloys from the mushy state: process, microstructure and mechanical properties. Mater Sci Eng A 326:370–381

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Taherzadeh Mousavian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afkham, Y., Fattahalhoseini, S.M., Khosroshahi, R.A. et al. Incorporation of Silicon Carbide and Alumina Particles into the Melt of A356 via Electroless Metallic Coating Followed by Stir Casting. Silicon 10, 2353–2359 (2018). https://doi.org/10.1007/s12633-018-9771-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9771-x

Keywords

Navigation