Skip to main content
Log in

Thermo-mechanical and Erosion Wear Peculiarity of Hybrid Composites Filled with Micro and Nano Silicon Dioxide Fillers – A Comparative Study

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This article presents the findings on thermo-mechanical and erosion wear characteristics of micro silicon dioxide (SiO2) fillers filled woven glass fiber based vinyl ester hybrid composites (MWGVHCs) as well as nano SiO2 filled woven glass fiber-vinyl ester hybrid composites (NWGVHCs). Wovenglass-vinyl ester based hybrid composites are developed, filled with 5wt.% and 10wt.% of micro and nano SiO2 fillers, respectively. Performance of filler filled composites is compared with the filler less composites. Thermo-mechanical analysis of hybrid composites is done as per ASTM standards. Angles of impact (30°, 45°, 60°, 75° and 90º), impact velocities (30, 55 and 80 m/s) and erodent size of 300, 450 and 600 µm is used for erosion wear test of fabricated composites. Taguchi statistical method is employed for design of experiments to optimize the process parameters. Findings reveal that hybrid composites filled with 10wt% of nano SiO2 filler performed best amongst all the in-class composites. In order to optimize the performance of fabricated composites VIKOR method is also implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Symbol:

Abbreviation

VIKOR:

VlseKriterijuska Optimizacija I Komoromisno Resenje

ρct :

Theoretical density of composite material

Wm :

Weight fraction of matrix material

Wf :

Weight fraction of particulate filler

ρm :

Density of matrix material

ρf :

Density of particulate filler

\(\frac {\mathrm {S}}{\mathrm {N}}\) :

Signal to noise ratio

N:

Number of observations

Y:

Observed data.

Mi :

Group utility

Ni :

Individual regret

Vi :

aggregating index

DF:

Degree of freedom

Seq. SS:

Sequential sum of squares

Adj SS:

Extra sum of squares

Adj MS:

Extra mean of squares

F:

F-test

\(\bar {\eta }_{Micro\thinspace SiO_{2}}\) :

Predicted average of erosion wear rate for micro SiO2 filler filled composites

\(\bar {\eta }_{Nano\thinspace SiO_{2}}\) :

Predicted average of erosion wear rate for nano SiO2 filler filled composites

\(\bar {T}\) :

Average of S/N ratio for complete experimental runs

A3, B3, C3 and D1 :

The mean response for factors at designated levels

References

  1. Milton GW (2004) The theory of composites. Cambridge University Press, Cambridge

    Google Scholar 

  2. Ashby MF, Jones DRH (1998) Engineering materials 2. Butterworth- Heinemann, Oxford

    Google Scholar 

  3. Fukunaga H, Chou TW, Fukuda H (1984) J Reinf Plast Compos 3(2):145–160

    Article  Google Scholar 

  4. Jawaid M, Abdul Khalil HPS (2011) Carbohydr Polym 86:1–18

    Article  CAS  Google Scholar 

  5. Sathishkumar T, Naveen J, Satheeshkumar S (2014) J Reinf Plast Compos 33:454–471

    Article  CAS  Google Scholar 

  6. Gupta MK, Srivastava RK (2016) Polym-Plast Techn Eng 55(6):626–642

    Article  CAS  Google Scholar 

  7. Saba N, Tahir PM, Jawaid M (2014) Polymers 6:2247–2273

    Article  CAS  Google Scholar 

  8. Nayak RK, Ray BC (2017) Polym Bull 74:4175–4194

    Article  CAS  Google Scholar 

  9. Mishnaevsky L (2012) Comput Mech 50(2):195–207

    Article  Google Scholar 

  10. Czél G, Wisnom MR (2013) Compos Appl Sci Manuf 52:23–30

    Article  CAS  Google Scholar 

  11. Pandya KS, Veerraju C, Naik NK (2011) Mater Des 32:4094–4099

    Article  CAS  Google Scholar 

  12. Zahavi J, Nadiv S, Schmitt GF (1981) Wear 72:305–313

    Article  CAS  Google Scholar 

  13. Tripaty BS, Furey MJ (1993) Wear 162:385–396

    Article  Google Scholar 

  14. Suresha B, Chandramohan G, Sampathkumaran P, Seetharamu S, Vynatheya S (2006) J Reinf Plast Comp 25(7):771–782

    Article  CAS  Google Scholar 

  15. Latha PS, Rao MV (2018) Silicon 10:1543–1550

    Article  CAS  Google Scholar 

  16. Kaundal R (2018) Silicon, https://doi.org/10.1007/s12633-018-9776-5

  17. Zang Z, Tang G, Li J, Li S (2012) Polym-Plast Technol 51:696–700

    Article  CAS  Google Scholar 

  18. Bula K, Jesionowski T (2012) Compos Interface 17:5–7, 603–614

    Google Scholar 

  19. Scott C, Ishida H, Maurer FHJ (1991) J Reinf Plast Comp 10:463–475

    Article  CAS  Google Scholar 

  20. Bagci M, Imrek H, Omari M (2011) Int J Maters Metall Eng 5(6):506–510

    Google Scholar 

  21. Jianguo Z (2014) J Thermoplast Compos 29(7):951–959

    Article  CAS  Google Scholar 

  22. Sugozu KB, Daghan B, Akdemir A, Ataberk N (2016) Ind Lubr Tribol 68(2):259–266

    Article  Google Scholar 

  23. Majhi M (2013) Growth and characterizations of sio2 thin film on silicon substrates, PhD, NIT Rourkela, Orissa, India

  24. Wang D, Gao J (2004) Int J Polym Mater 53(12):1085–1100

    Article  CAS  Google Scholar 

  25. Chen G, Tian M, Guo S (2006) J Macromol Sci B 45(5):709–725

    Article  CAS  Google Scholar 

  26. Ren J, Wang J, Wang H, Zhang J, Yang S (2009) J Macromol Sci B 48(6):1069–1080

    Article  CAS  Google Scholar 

  27. Tang G, Shao C, Hu X, Tang T (2014) J Thermoplast Compos 29(7):1020–1029

    Article  CAS  Google Scholar 

  28. Zhu JB, Yang XJ, Cui ZD, Zhu SL, Wei Q (2006) J Macromol Sci B 45(5):811–820

    Article  CAS  Google Scholar 

  29. Hou X, Hu Y, Hu X, Jiang D (2017) High Performance Polym 30(4):406–417

    Article  CAS  Google Scholar 

  30. He E, Wang S, Li Y, Wang Q (2017) Comp Mater Sci 134:93–99

    Article  CAS  Google Scholar 

  31. Wong T, Lau K, Tam W, Leng J, Etches JA (2014) Mater Design 56:254–257

    Article  CAS  Google Scholar 

  32. Zhao S, Schadler LS, Duncan R, Hillborg H, Auletta T (2008) Comp Sci Technol 68:2965–2975

    Article  CAS  Google Scholar 

  33. Abenojar J, Tutor J, Ballesteros Y, del Real JC, Martínez MA (2017) Compos Part B Eng 120:42–53

    Article  CAS  Google Scholar 

  34. Bachi M, Imrek H, Khalfan OM (2015) J Tribol 137:011602–7

    Article  CAS  Google Scholar 

  35. Li Z (2012) J Thermoplast Compos 27(6):793–800

    Article  CAS  Google Scholar 

  36. Vigneshwaran S, Uthayakumar M, Arumugaprabu V, Johnson RDJ (2018) J Reinf Plast Comp, https://doi.org/10.1177/0731684418777111

  37. Agarwal BD, Broutman LJ (1990) Analysis and performance of fibre composites, 2nd edn. Wiley, Inc

    Google Scholar 

  38. Glen SP (1993) Taguchi methods: a hand on approach. Addison-Wesley, New York

    Google Scholar 

  39. Opricovic S, Tzeng GH (2007) Eur J Oper Res 178:514–529

    Article  Google Scholar 

  40. Choobineh F, Behrens A (1992) J Oper Res Soc 43:907–918

    Article  Google Scholar 

  41. Sayadi MK, Heydari M, Shahanaghi K (2009) Appl Math Model 33:2257–2262

    Article  Google Scholar 

  42. Rout A, Satapathy A, Mantry S, Sahoo A, Mohanty T (2012) Procedia engineer 38:1863–1882

    Article  CAS  Google Scholar 

  43. Patnaik A, Satapathy A, Mahapatra SS (2009) J Tribol 131:031011–1-16

    Google Scholar 

  44. Naeimirad M, Zadhoush A, Neisiany RE (2016) J Compos Maters 50:435–446

    Article  CAS  Google Scholar 

  45. Friedrich K (2005) Polymer composites from nano- to macroscale, Springer, Zhang Z

  46. Hagstrand PO, Bonjour F, Manson JAE (2005) Compos A 36:705–714

    Article  CAS  Google Scholar 

  47. Siddhartha, Patnaik A, Bhatt AD (2011) Maters design 32:615–627

    Article  CAS  Google Scholar 

  48. Qazvini NT, Mohammadi N (2005) Polymer 46:9088–9096

    Article  CAS  Google Scholar 

  49. Ornaghi HL, Pistor V, Zattera AJ (2012) J Non-Crystalline Solids 358:427–432

    Article  CAS  Google Scholar 

  50. Pistor V, Ornaghi FG, Ornaghi HL, Zattera AJ (2012) Maters Sci Eng A 532:339–345

    Article  CAS  Google Scholar 

  51. Jawaid M, Abdul Khalil HPS, Hassan A, Dungani R, Hadiyane A (2013) Compos B Eng 45:619–624

    Article  CAS  Google Scholar 

  52. Rattan R, Bijwe J (2007) Wear 262:568–574

    Article  CAS  Google Scholar 

  53. Kaundal R (2014) Silicon 6:5–20

    Article  CAS  Google Scholar 

  54. Hutchings IM, Winter RE, Field JE (1976) Proc Royal Soc A 348:379–392

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anant Krishan Pun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pun, A.K., Siddhartha & Singh, A.K. Thermo-mechanical and Erosion Wear Peculiarity of Hybrid Composites Filled with Micro and Nano Silicon Dioxide Fillers – A Comparative Study. Silicon 11, 1885–1901 (2019). https://doi.org/10.1007/s12633-018-0007-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-0007-x

Keywords

Navigation