Silicon

pp 1–8 | Cite as

Wettability of Al2O3, MgO, and TiB2 Inclusions with Liquid Silicon

  • Harish Iyer
  • Leili Tafaghodi Khajavi
  • Damian Durlik
  • Karim Danaei
  • Mansoor Barati
Original Paper
  • 5 Downloads

Abstract

An experimental study was conducted to characterize the interaction between liquid silicon and refractory inclusions that are often present in silicon as solid inclusions. The investigation was carried out using the sessile drop technique. Contact angle measurements were performed for Al2O3, MgO, and TiB2 substrates, as a function of wetting time at 1420 °C, and as a function of temperature from 1420 °C to 1520 °C for each system. The interface between silicon and ceramic was also analyzed using SEM-EDS to investigate the nature of the interactions between the two phases. Such data is critical for evaluating the removability of ceramic impurities from crude silicon.

Keywords

Silicon Surface tension Wettability Contact angle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fraunhofer (2016) Photovoltaics Report. Fraunhofer Institute for Solar Energy SystemsGoogle Scholar
  2. 2.
    Braga AFB, Moreira SP, Zampieri PR, Bacchin JMG, Mei PR (2008) New processes for the production of solar-grade polycrystalline silicon: a review. Sol Energy Mater Sol Cells 92:418–424CrossRefGoogle Scholar
  3. 3.
    Liang ZC, Chen DM, Liang XQ, Yang ZJ, Shen H, Shi J (2010) Crystalline Si solar cells based on solar grade Silicon materials. Renew Energy 35:2297–2300CrossRefGoogle Scholar
  4. 4.
    Stalder AF, Melchior T, Müller M, Sage D, Blu T, Unser M (2010) A snake-based approach to accurate determination of both contact points and contact angles. Colloids Surf A 364:72– 81CrossRefGoogle Scholar
  5. 5.
    Li JG, Hausner H (1992) Wetting and adhesion in liquid silicon and ceramic systems. Mater Lett 14:329–332CrossRefGoogle Scholar
  6. 6.
    Yuan Z, Huang WL, Mukai K (2004) Wettability and reactivity of liquid silicon with various substrates. Appl Phys A Mater Sci Process 78:617–622CrossRefGoogle Scholar
  7. 7.
    Drevet B, Eustathopoulos N (2012) Wetting of ceramics by molten silicon and silicon alloys: a review. J Mater Sci 47:8247– 8260CrossRefGoogle Scholar
  8. 8.
    Eustathopoulos N, Drevet B (1998) Determination of the nature of metal-oxide interfacial interactions from sessile drop data. Mater Sci Eng A 249:176–183CrossRefGoogle Scholar
  9. 9.
    Hallstedt B (1992) Thermodynamic assessment of the silicon-oxygen system. Calphad 16:53–61CrossRefGoogle Scholar
  10. 10.
    Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Hack K, Jung IH, Kang YB, Melançon J, Pelton AD, Robelin C, Petersen S (2009) Factsage thermochemical software and databases - recent developments. Calphad 33:295–311CrossRefGoogle Scholar
  11. 11.
    Feufel H, Godecke T, Lukas HL, Sommer F (1997) Investigation of the Al-Mg-Si system by expeeriments and thermodynamic calculations. J Alloys Compd 247:31–42CrossRefGoogle Scholar
  12. 12.
    Gale WF, Totemeier TC (2004) Smithells metals reference book, 8th edn. Elsevier, OxfordGoogle Scholar
  13. 13.
    Fujii H, Matsumoto T, Izutani S, Kiguchi S, Nogi K (2006) Surface tension of molten silicon measured by microgravity oscillating drop method and improved sessile drop method. Acta Mater 54:1221–1225CrossRefGoogle Scholar
  14. 14.
    Lukin SV, Zhuchkov VI, Vatolin NA, Kozlov YS (1979) The physicochemical properties of Si-B alloys. J Less-Common Met 67:407–413CrossRefGoogle Scholar
  15. 15.
    Fujii H, Yamamoto M, Hara S, Nogi K (1999) Effect of gas evolution at solid-liquid interface on contact angle between liquid Si and SiO2. J Mater Sci 34:3165–3168CrossRefGoogle Scholar
  16. 16.
    Alphei LD, Dobbe C, Becker V, Becker JA (2015) A high-temperature Auger electron spectrometer setup and its application to reactive wetting experiments at 1700 K. J Mater Sci 50:3175–3182CrossRefGoogle Scholar
  17. 17.
    Apelian D, Choi KK (1988) Metal refining by filtration. Plenum Press, New YorkCrossRefGoogle Scholar
  18. 18.
    Aizenshtien M, Froumin N, Barth P, Tsoref ES, Dariel MP, Frage N (2007) How does the composition of quasi-stoichiometric titanium diboride affect its wetting by liquid Cu and Au. J Alloys Compd 442:375–378CrossRefGoogle Scholar
  19. 19.
    Muolo ML, Delsante A, Bassoli M, Passerone A, Bellosi A (1997) Wettability of TiB2 ceramics by liquid Cu and Ag-Cu eutectic alloys. In: Bellosi A, Kosmac T, Tomsia AP (eds) Proceedings of the NATO advanced res workshop on interfacial sci in ceram join. Kluwer academic publishers, pp 87–94Google Scholar
  20. 20.
    Rhee SK (1970) Wetting of ceramics by liquid Aluminum. J Am Ceram Soc 53:386–389CrossRefGoogle Scholar
  21. 21.
    Panasyuk AD, Umansky P (1986) Physicochemical principles of the formation of composite materials based on titanium diboride. J Less-Common Met 117:335–339CrossRefGoogle Scholar
  22. 22.
    Eustathopoulos N, Ghetta V, Gayraud N (1992) Wetting of iron on sintered TiB2. Solid State Phenom 25-26:105–114CrossRefGoogle Scholar
  23. 23.
    Lundstorm T, Matkovich VI (1977) Boron and refractory bodies. Springer, New YorkGoogle Scholar
  24. 24.
    Li LH, Kim HE, Kang ES (2002) Sintering and mechanical properties of titanium diboride with aluminum nitride as a sintering aid. J Eur Ceram Soc 22:973–977CrossRefGoogle Scholar
  25. 25.
    Kingery WD (1959) Surface tension of some liquid oxides and their temperature coefficients. J Am Ceram Soc 42:6–10CrossRefGoogle Scholar
  26. 26.
    Jura G, Garland CW (1952) The experimental determination of the surface tension of magnesium oxide. J Am Chem Soc 74:6033–6034CrossRefGoogle Scholar
  27. 27.
    Humenik M, Kingery WD (1954) Metal ceramic interactions: III - surface tensions and wettability of metal-ceramic systems. J Am Ceram Soc 37:18–23CrossRefGoogle Scholar
  28. 28.
    Sasaki H, Anzai Y, Huang X, Terashima K, Kimura S (1995) Surface tension variation of molten silicon measured by the ring method. Jpn J Appl Phys 34:414–418CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Harish Iyer
    • 1
  • Leili Tafaghodi Khajavi
    • 2
  • Damian Durlik
    • 3
  • Karim Danaei
    • 4
  • Mansoor Barati
    • 4
  1. 1.Metals Department at TenovaTorontoCanada
  2. 2.University of British ColumbiaVancouverCanada
  3. 3.Business Analytics at Royal Bank of CanadaTorontoCanada
  4. 4.University of TorontoTorontoCanada

Personalised recommendations