Skip to main content
Log in

Wettability of Al2O3, MgO, and TiB2 Inclusions with Liquid Silicon

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

An experimental study was conducted to characterize the interaction between liquid silicon and refractory inclusions that are often present in silicon as solid inclusions. The investigation was carried out using the sessile drop technique. Contact angle measurements were performed for Al2O3, MgO, and TiB2 substrates, as a function of wetting time at 1420 °C, and as a function of temperature from 1420 °C to 1520 °C for each system. The interface between silicon and ceramic was also analyzed using SEM-EDS to investigate the nature of the interactions between the two phases. Such data is critical for evaluating the removability of ceramic impurities from crude silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fraunhofer (2016) Photovoltaics Report. Fraunhofer Institute for Solar Energy Systems

  2. Braga AFB, Moreira SP, Zampieri PR, Bacchin JMG, Mei PR (2008) New processes for the production of solar-grade polycrystalline silicon: a review. Sol Energy Mater Sol Cells 92:418–424

    Article  CAS  Google Scholar 

  3. Liang ZC, Chen DM, Liang XQ, Yang ZJ, Shen H, Shi J (2010) Crystalline Si solar cells based on solar grade Silicon materials. Renew Energy 35:2297–2300

    Article  CAS  Google Scholar 

  4. Stalder AF, Melchior T, Müller M, Sage D, Blu T, Unser M (2010) A snake-based approach to accurate determination of both contact points and contact angles. Colloids Surf A 364:72– 81

    Article  CAS  Google Scholar 

  5. Li JG, Hausner H (1992) Wetting and adhesion in liquid silicon and ceramic systems. Mater Lett 14:329–332

    Article  CAS  Google Scholar 

  6. Yuan Z, Huang WL, Mukai K (2004) Wettability and reactivity of liquid silicon with various substrates. Appl Phys A Mater Sci Process 78:617–622

    Article  CAS  Google Scholar 

  7. Drevet B, Eustathopoulos N (2012) Wetting of ceramics by molten silicon and silicon alloys: a review. J Mater Sci 47:8247– 8260

    Article  CAS  Google Scholar 

  8. Eustathopoulos N, Drevet B (1998) Determination of the nature of metal-oxide interfacial interactions from sessile drop data. Mater Sci Eng A 249:176–183

    Article  Google Scholar 

  9. Hallstedt B (1992) Thermodynamic assessment of the silicon-oxygen system. Calphad 16:53–61

    Article  CAS  Google Scholar 

  10. Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Hack K, Jung IH, Kang YB, Melançon J, Pelton AD, Robelin C, Petersen S (2009) Factsage thermochemical software and databases - recent developments. Calphad 33:295–311

    Article  CAS  Google Scholar 

  11. Feufel H, Godecke T, Lukas HL, Sommer F (1997) Investigation of the Al-Mg-Si system by expeeriments and thermodynamic calculations. J Alloys Compd 247:31–42

    Article  CAS  Google Scholar 

  12. Gale WF, Totemeier TC (2004) Smithells metals reference book, 8th edn. Elsevier, Oxford

    Google Scholar 

  13. Fujii H, Matsumoto T, Izutani S, Kiguchi S, Nogi K (2006) Surface tension of molten silicon measured by microgravity oscillating drop method and improved sessile drop method. Acta Mater 54:1221–1225

    Article  CAS  Google Scholar 

  14. Lukin SV, Zhuchkov VI, Vatolin NA, Kozlov YS (1979) The physicochemical properties of Si-B alloys. J Less-Common Met 67:407–413

    Article  CAS  Google Scholar 

  15. Fujii H, Yamamoto M, Hara S, Nogi K (1999) Effect of gas evolution at solid-liquid interface on contact angle between liquid Si and SiO2. J Mater Sci 34:3165–3168

    Article  CAS  Google Scholar 

  16. Alphei LD, Dobbe C, Becker V, Becker JA (2015) A high-temperature Auger electron spectrometer setup and its application to reactive wetting experiments at 1700 K. J Mater Sci 50:3175–3182

    Article  CAS  Google Scholar 

  17. Apelian D, Choi KK (1988) Metal refining by filtration. Plenum Press, New York

    Book  Google Scholar 

  18. Aizenshtien M, Froumin N, Barth P, Tsoref ES, Dariel MP, Frage N (2007) How does the composition of quasi-stoichiometric titanium diboride affect its wetting by liquid Cu and Au. J Alloys Compd 442:375–378

    Article  CAS  Google Scholar 

  19. Muolo ML, Delsante A, Bassoli M, Passerone A, Bellosi A (1997) Wettability of TiB2 ceramics by liquid Cu and Ag-Cu eutectic alloys. In: Bellosi A, Kosmac T, Tomsia AP (eds) Proceedings of the NATO advanced res workshop on interfacial sci in ceram join. Kluwer academic publishers, pp 87–94

  20. Rhee SK (1970) Wetting of ceramics by liquid Aluminum. J Am Ceram Soc 53:386–389

    Article  CAS  Google Scholar 

  21. Panasyuk AD, Umansky P (1986) Physicochemical principles of the formation of composite materials based on titanium diboride. J Less-Common Met 117:335–339

    Article  CAS  Google Scholar 

  22. Eustathopoulos N, Ghetta V, Gayraud N (1992) Wetting of iron on sintered TiB2. Solid State Phenom 25-26:105–114

    Article  Google Scholar 

  23. Lundstorm T, Matkovich VI (1977) Boron and refractory bodies. Springer, New York

    Google Scholar 

  24. Li LH, Kim HE, Kang ES (2002) Sintering and mechanical properties of titanium diboride with aluminum nitride as a sintering aid. J Eur Ceram Soc 22:973–977

    Article  CAS  Google Scholar 

  25. Kingery WD (1959) Surface tension of some liquid oxides and their temperature coefficients. J Am Ceram Soc 42:6–10

    Article  CAS  Google Scholar 

  26. Jura G, Garland CW (1952) The experimental determination of the surface tension of magnesium oxide. J Am Chem Soc 74:6033–6034

    Article  CAS  Google Scholar 

  27. Humenik M, Kingery WD (1954) Metal ceramic interactions: III - surface tensions and wettability of metal-ceramic systems. J Am Ceram Soc 37:18–23

    Article  CAS  Google Scholar 

  28. Sasaki H, Anzai Y, Huang X, Terashima K, Kimura S (1995) Surface tension variation of molten silicon measured by the ring method. Jpn J Appl Phys 34:414–418

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leili Tafaghodi Khajavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyer, H., Tafaghodi Khajavi, L., Durlik, D. et al. Wettability of Al2O3, MgO, and TiB2 Inclusions with Liquid Silicon. Silicon 10, 2219–2226 (2018). https://doi.org/10.1007/s12633-017-9753-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-017-9753-4

Keywords

Navigation