Cardiac output-based fluid optimization for kidney transplant recipients: a proof-of-concept trial

  • Davide Corbella
  • Patrick Jason Toppin
  • Anand Ghanekar
  • Nour Ayach
  • Jeffery Schiff
  • Adrian Van Rensburg
  • Stuart A. McCluskey
Reports of Original Investigations



Intravenous fluid management for deceased donor kidney transplantation is an important, modifiable risk factor for delayed graft function (DGF). The primary objective of this study was to determine if goal-directed fluid therapy using esophageal Doppler monitoring (EDM) to optimize stroke volume (SV) would alter the amount of fluid given.


This randomized, proof-of-concept trial enrolled 50 deceased donor renal transplant recipients. Data collected included patient characteristics, fluid administration, hemodynamics, and complications. The EDM was used to optimize SV in the EDM group. In the control group, fluid management followed the current standard of practice. The groups were compared for the primary outcome of total intraoperative fluid administered.


There was no difference in the mean (standard deviation) volume of intraoperative fluid administered to the 24 control and 26 EDM patients [2,307 (750) mL vs 2,675 (842) mL, respectively; mean difference, 368 mL; 95% confidence interval (CI), − 87 to + 823; P = 0.11]. The incidence of complications in the control and EDM groups was similar (15/24 vs 17/26, respectively; P = 0.99), as was the incidence of delayed graft failure (8/24 vs 11/26, respectively; P = 0.36).


Goal-directed fluid therapy did not alter the volume of fluid administered or the incidence of complications. This proof-of-concept trial provides needed data for conducting a larger trial to determine the influence of fluid therapy on the incidence in DGF in deceased donor kidney transplantation.

Trial registration (NCT02512731). Registered 31 July 2015.

Gestion optimisée des liquides basée sur le débit cardiaque chez les transplantés rénaux : un essai de preuve de concept



La gestion des liquides intraveineux pour la transplantation de rein de donneur décédé est un facteur de risque modifiable important du retard de fonctionnement du greffon (DGF). L’objectif principal de cette étude était de déterminer si un traitement liquidien utilisant un monitorage par Doppler transœsophagien (EDM) pour optimiser le volume d’éjection cardiaque modifierait la quantité de liquides administrée.


Cette étude randomisée de preuve de concept a inclus 50 patients receveurs de greffe de rein provenant de donneurs décédés. Les données collectées ont inclus les caractéristiques démographiques des patients, l’administration de liquides, les données hémodynamiques et les complications. L’EDM a été utilisé pour optimiser le volume d’éjection dans le groupe EDM. Dans le groupe contrôle, la gestion des liquides a suivi les normes de pratique actuelles. Le critère d’évaluation principal qui était la quantité totale de liquide administrée en peropératoire a été comparé entre les groupes.


Il n’y a pas eu de différence de volume moyen (écart-type) de liquide administré en cours d’intervention entre les 24 témoins et les 26 patients du groupe EDM (respectivement 2 307 [750] mL contre 2 675 [842] mL; différence des moyennes, 368 mL; intervalle de confiance [IC] à 95 % : − 87 à + 823; P = 0,11). L’incidence des complications a été similaire dans le groupe contrôle et dans le groupe EDM (respectivement, 15/24 contre 17/26; P = 0,99), tout comme l’incidence des échecs tardifs des greffes (respectivement, 8/24 contre 11/26; P = 0,36).


Le traitement avec gestion des liquides axé basé sur l’optimisation du volume d’éjection n’a pas modifié le volume de liquides administrés ou l’incidence des complications. Cette étude de preuve de concept procure les données nécessaires à la réalisation d’une plus grande étude visant à déterminer l’influence du traitement liquidien sur l’incidence du DGF après transplantation rénale de donneur décédé.

Enregistrement de l’essai clinique (NCT02512731). Enregistré le 31 juillet 2015.



Drs. Hilary Felice and Rohan Kothari initiated the study and developed a recruitment strategy consistent with the recommendations of our Research Ethics Board and principles of informed patient consent.

Davide Corbella and Patrick Jason Toppin were supported by a departmental funding as part of the Abdominal Organ Transplantation Fellowship in Anesthesia in the Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network.

This trial was supported in part by the Dr. Earl Wynands/Fresenius Kabi Research Award from the Canadian Anesthesia Research Foundation. number: NCT02512731.

Conflicts of interest

None declared.

Editorial responsibility

This submission was handled by Dr. Hilary P. Grocott, Editor-in-Chief, Canadian Journal of Anesthesia.

Author contributions

Davide Corbella was responsible for analyzing the data and drafting the first version of the article submitted and the subsequent version. Patrick Jason Toppin developed the protocol. Nour Ayach managed the trial and obtained REB approval. Anand Ghanekar, Jeffery Schiff, Adrian Van Rensburg, and Stuart A. McCluskey developed the protocol and supported the study in their own clinical specialty. All authors participated in the revision and content editing of the manuscript.


  1. 1.
    Yarlagadda SG, Coca SG, Garg AX, et al. Marked variation in the definition and diagnosis of delayed graft function: a systematic review. Nephrol Dial Transplant 2008; 23: 2995-3003.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Tapiawala SN, Tinckam KJ, Cardella CJ, et al. Delayed graft function and the risk for death with a functioning graft. J Am Soc Nephrol 2010; 21: 153-61.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Yarlagadda SG, Coca SG, Formica RN Jr, Poggio ED, Parikh CR. Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis. Nephrol Dial Transplant 2009; 24: 1039-47.CrossRefPubMedGoogle Scholar
  4. 4.
    Keitel E, Michelon T, dos Santos AF, et al. Renal transplants using expanded cadaver donor criteria. Ann Transplant 2004; 9: 23-4.PubMedGoogle Scholar
  5. 5.
    Heilman RL, Mathur A, Smith ML, Kaplan B, Reddy KS. Increasing the use of kidneys from unconventional and high-risk deceased donors. Am J Transplant 2016; 16: 3086-92.CrossRefPubMedGoogle Scholar
  6. 6.
    Demiselle J, Augusto JF, Videcoq M, et al. Transplantation of kidneys from uncontrolled donation after circulatory determination of death: comparison with brain death donors with or without extended criteria and impact of normothermic regional perfusion. Transpl Int 2016; 29: 432-42.CrossRefPubMedGoogle Scholar
  7. 7.
    Carlier M, Squifflet JP, Pirson Y, Decocq L, Gribomont B, Alexandre GP. Confirmation of the crucial role of the recipient’s maximal hydration on early diuresis of the human cadaver renal allograft. Transplantation 1983; 36: 455-6.CrossRefPubMedGoogle Scholar
  8. 8.
    Abdallah E, El-Shishtawy S, Mosbah O, Zeidan M. Comparison between the effects of intraoperative human albumin and normal saline on early graft function in renal transplantation. Int Urol Nephrol 2014; 46: 2221-6.CrossRefPubMedGoogle Scholar
  9. 9.
    Dawidson IJ, Sandor ZF, Coorpender L, et al. Intraoperative albumin administration affects the outcome of cadaver renal transplantation. Transplantation 1992; 53: 774-82.CrossRefPubMedGoogle Scholar
  10. 10.
    Willms CD, Dawidson IJ, Dickerman R, Drake D, Sandor ZF, Trevino G. Intraoperative blood volume expansion induces primary function after renal transplantation: a study of 96 paired cadaver kidneys. Transplant Proc 1991; 23(1 Pt 2): 1338-9.PubMedGoogle Scholar
  11. 11.
    Schmid S, Jungwirth B. Anaesthesia for renal transplant surgery: an update. Eur J Anaesthesiol 2012; 29: 552-8.CrossRefPubMedGoogle Scholar
  12. 12.
    Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 2008; 134: 172-8.CrossRefPubMedGoogle Scholar
  13. 13.
    Snoeijs MG, Wiermans B, Christiaans MH, et al. Recipient hemodynamics during non-heart-beating donor kidney transplantation are major predictors of primary nonfunction. Am J Transplant 2007; 7: 1158-66.CrossRefPubMedGoogle Scholar
  14. 14.
    Thomsen HS, Lokkegaard H, Munck O. Influence of normal central venous pressure on onset of function in renal allografts. Scand J Urol Nephrol 1987; 21: 143-5.CrossRefPubMedGoogle Scholar
  15. 15.
    Luciani J, Frantz P, Thibault P, et al. Early anuria prevention in human kidney transplantation. Advantage of fluid load under pulmonary arterial pressure monitoring during surgical period. Transplantation 1979; 28: 308-12.CrossRefPubMedGoogle Scholar
  16. 16.
    Van Loo AA, Vanholder RC, Bernaert PR, Vermassen FE, Van der Vennet M, Lameire NH. Pretransplantation hemodialysis strategy influences early renal graft function. J Am Soc Nephrol 1998; 9: 473-81.PubMedGoogle Scholar
  17. 17.
    Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004; 240: 205-13.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dobson G, Chong M, Chow L, et al. Guidelines to the practice of anesthesia - revised edition 2017. Can J Anesth 2017; 64: 65-91.Google Scholar
  19. 19.
    Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg 2011; 112: 1392-402.CrossRefPubMedGoogle Scholar
  20. 20.
    Challand C, Struthers R, Sneyd JR, et al. Randomized controlled trial of intraoperative goal-directed fluid therapy in aerobically fit and unfit patients having major colorectal surgery. Br J Anaesth 2012; 108: 53-62.CrossRefPubMedGoogle Scholar
  21. 21.
    Lai CW, Starkie T, Creanor S, et al. Randomized controlled trial of stroke volume optimization during elective major abdominal surgery in patients stratified by aerobic fitness. Br J Anaesth 2015; 115: 578-89.CrossRefPubMedGoogle Scholar
  22. 22.
    Jans O, Tollund C, Bundgaard-Nielsen M, Selmer C, Warberg J, Secher NH. Goal-directed fluid therapy: stroke volume optimisation and cardiac dimensions in supine healthy humans. Acta Anaesthesiol Scand 2008; 52: 536-40.CrossRefPubMedGoogle Scholar
  23. 23.
    Schober P, Loer SA, Schwarte LA. Perioperative hemodynamic monitoring with transesophageal Doppler technology. Anesth Analg 2009; 109: 340-53.CrossRefPubMedGoogle Scholar
  24. 24.
    Corcoran T, Rhodes JE, Clarke S, Myles PS, Ho KM. Perioperative fluid management strategies in major surgery: a stratified meta-analysis. Anesth Analg 2012; 114: 640-51.CrossRefPubMedGoogle Scholar
  25. 25.
    Akkina SK, Connaire JJ, Israni AK, Snyder JJ, Matas AJ, Kasiske BL. Similar outcomes with different rates of delayed graft function may reflect center practice, not center performance. Am J Transplant 2009; 9: 1460-6.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Shaw AD. Cardiac surgery-associated acute kidney injury: tools for enriching clinical trial populations. Can J Anesth 2017; 64: 793-6.CrossRefPubMedGoogle Scholar
  27. 27.
    Pearse RM, Harrison DA, MacDonald N, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA 2014; 311: 2181-90.CrossRefPubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists' Society 2018

Authors and Affiliations

  1. 1.Department of Anesthesia and Pain Management, Toronto General HospitalUniversity Health NetworkTorontoCanada
  2. 2.Department of AnesthesiaUniversity of TorontoTorontoCanada
  3. 3.Department of Surgery, Toronto General HospitalUniversity of TorontoTorontoCanada
  4. 4.Department of Medicine, Toronto General HospitalUniversity of TorontoTorontoCanada

Personalised recommendations