Review of the enhanced recovery pathway for children: perioperative anesthetic considerations

  • Jessica A. George
  • Rahul Koka
  • Tong J. Gan
  • Eric Jelin
  • Emily F. Boss
  • Val Strockbine
  • Deborah Hobson
  • Elizabeth C. Wick
  • Christopher L. Wu
Review Article/Brief Review



Enhanced recovery after surgery (ERAS) pathways have been used for two decades to improve perioperative recovery in adults. Nevertheless, little is known about their effectiveness in children. The purpose of this review was to consider pediatric ERAS pathways, review the literature concerned with their potential benefit, and compare them with adult ERAS pathways.


A PubMed literature search was performed for articles that included the terms enhanced recovery and/or fast track in the pediatric perioperative period. Pediatric patients included those from the neonatal period through teenagers and/or youths.

Principal findings

The literature search revealed a paucity of articles about pediatric ERAS. This lack of academic investigation is likely due in part to the delayed acceptance of ERAS in the pediatric surgical arena. Several pediatric studies examined individual components of adult-based ERAS pathways, but the overall study of a comprehensive multidisciplinary ERAS protocol in pediatric patients is lacking.


Although adult ERAS pathways have been successful at reducing patient morbidity, the translation, creation, and utility of instituting pediatric ERAS pathways have yet to be realized.

Les programmes de récupération rapide pour les enfants: considérations anesthésiques périopératoires



Les programmes de récupération rapide après la chirurgie (RRAC, connus aussi sous l’acronyme ERAS) sont utilisés depuis une vingtaine d’années pour améliorer la récupération périopératoire des adultes. Nous ne connaissons toutefois que peu de choses concernant leur efficacité auprès des enfants. L’objectif de ce compte-rendu était d’examiner les programmes pédiatriques de RRAC, de passer en revue la littérature touchant à leurs avantages potentiels, et de les comparer aux programmes de RRAC destinés aux adultes.


Une recherche de la littérature a été réalisée sur PubMed afin d’identifier les articles comprenant les termes « récupération rapide » (‘enhanced recovery’ et/ou ‘fast track’) en période périopératoire pédiatrique. Les patients pédiatriques étaient définis comme étant des patients allant de la période néonatale à l’adolescence.

Constatations principales

La recherche de littérature a révélé très peu d’articles touchant à la RRAC pédiatrique. Cette absence de recherches académiques est probablement due en partie à l’acceptation tardive des programmes de RRAC dans le domaine de la chirurgie pédiatrique. Plusieurs études pédiatriques ont examiné des composantes individuelles des programmes de RRAC dédiés aux adultes, mais l’étude globale d’un protocole de RRAC multidisciplinaire complet auprès de patients pédiatriques n’existe pas.


Bien que les programmes de RRAC appliqués chez l’adulte soient parvenus à réduire la morbidité des patients, le transfert, la création et l’utilité de la mise en œuvre de tels programmes chez l’enfant doivent encore avoir lieu.


Conflicts of interest

None declared.

Editorial responsibility

This submission was handled by Dr. Steven Backman, Associate Editor, Canadian Journal of Anesthesia.

Author contributions

Jessica A. George was involved in the overall manuscript writing including the sections on pediatric evidence, pediatric enhanced recovery after surgery (ERAS) pathway components, and future directions. Rahul Koka was involved in the perioperative pediatric ERAS components. Tong J. Gan was involved in the adult ERAS literature comparison and guidance on pediatric vs adult ERAS components. Eric Jelin was involved in the surgical components of pediatric enhanced recovery pathways. Emily F. Boss was involved in the pediatric portion of introduction and outcomes measures. Val Strockbine was involved in the pediatric literature review. Deborah Hobson was involved in outcomes assessment. Elizabeth C. Wick was involved in outcomes assessment and current adult tools. Christopher L. Wu was involved in the background/introduction, and adult ERAS literature review.


  1. 1.
    Lv L, Shao YF, Zhou YB. The enhanced recovery after surgery (ERAS) pathway for patients undergoing colorectal surgery: an update of meta-analysis of randomized controlled trials. Int J Colorectal Dis 2012; 27: 1549-54.CrossRefPubMedGoogle Scholar
  2. 2.
    Spanjersberg WR, Reurings J, Keus F, van Laarhoven CJ. Fast track surgery versus conventional recovery strategies for colorectal surgery. Cochrane Database Syst Rev 2011; 2: CD007635.Google Scholar
  3. 3.
    Song W, Wang K, Zhang RJ, Dai QX, Zou SB. The enhanced recovery after surgery (ERAS) program in liver surgery: a meta-analysis of randomized controlled trials. Springerplus 2016; 5: 207.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ni TG, Yang HT, Zhang H, Meng HP, Li B. Enhanced recovery after surgery programs in patients undergoing hepatectomy: a meta-analysis. World J Gastroenterol 2015; 21: 9209-16.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Xiong J, Szatmary P, Huang W, et al. Enhanced recovery after surgery program in patients undergoing pancreaticoduodenectomy: a PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 2016; 95: e3497.CrossRefGoogle Scholar
  6. 6.
    Wang H, Zhu D, Liang L, et al. Short-term quality of life in patients undergoing colonic surgery using enhanced recovery after surgery program versus conventional perioperative management. Qual Life Res 2015; 24: 2663-70.CrossRefPubMedGoogle Scholar
  7. 7.
    Philp S, Carter J, Pather S, Barnett C, D’Abrew N, White K. Patients’ satisfaction with fast-track surgery in gynaecological oncology. Eur J Cancer Care (Engl) 2015; 24: 567-73.CrossRefGoogle Scholar
  8. 8.
    Wick EC, Galante DJ, Hobson DB, et al. Organizational culture changes result in improvement in patient-centered outcomes: implementation of an integrated recovery pathway for surgical patients. J Am Coll Surg 2015; 221: 669-77.CrossRefPubMedGoogle Scholar
  9. 9.
    Stone AB, Grant MC, Pio Roda C, et al. Implementation costs of an enhanced recovery after surgery program in the United States: a financial model and sensitivity analysis based on experiences at a quaternary academic medical center. J Am Coll Surg 2016; 222: 219-25.CrossRefPubMedGoogle Scholar
  10. 10.
    Gustafsson UO, Hausel J, Thorell A, et al. Adherence to the enhanced recovery after surgery protocol and outcomes after colorectal cancer surgery. Arch Surg 2011; 146: 571-7.CrossRefPubMedGoogle Scholar
  11. 11.
    Shinnick JK, Short HL, Heiss KF, Santore MT, Blakely ML, Raval MV. Enhancing recovery in pediatric surgery: a review of the literature. J Surg Res 2016; 202: 165-76.CrossRefPubMedGoogle Scholar
  12. 12.
    Pearson KL, Hall NJ. What is the role of enhanced recovery after surgery in children? A scoping review. Pediatr Surg Int 2017; 33: 43-51.CrossRefPubMedGoogle Scholar
  13. 13.
    Leeds IL, Boss EF, George JA, Strockbine V, Wick EC, Jelin EB. Preparing enhanced recovery after surgery for implementation in pediatric populations. J Pediatr Surg 2016; 51: 2126-9.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dillon P, Hammermeister K, Morrato E, et al. Developing a NSQIP module to measure outcomes in children’s surgical care: opportunity and challenge. Semin Pediatr Surg 2008; 17: 131-40.CrossRefPubMedGoogle Scholar
  15. 15.
    Fortier MA, Chorney JM, Rony RY, et al. Children’s desire for perioperative information. Anesth Analg 2009; 109: 1085-90.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Klingman A, Melamed BG, Cuthbert MI, Hermecz DA. Effects of participant modeling on information acquisition and skill utilization. J Consult Clin Psychol 1984; 52: 414-22.CrossRefPubMedGoogle Scholar
  17. 17.
    Melamed BG, Yurcheson R, Fleece EL, Hutcherson S, Hawes R. Effects of film modeling on the reduction of anxiety-related behaviors in individuals varying in level of previous experience in the stress situation. J Consult Clin Psychol 1978; 46: 1357-67.CrossRefPubMedGoogle Scholar
  18. 18.
    Jaaniste T, Hayes B, Von Baeyer CL. Providing children with information about forthcoming medical procedures: a review and synthesis. Clin Psychol Sci Pract 2007; 14: 124-43.CrossRefGoogle Scholar
  19. 19.
    Bruck M, Ceci SJ, Francoeur E. Children’s use of anatomically detailed dolls to report genital touching in a medical examination: developmental and gender comparisons. J Exp Psychol Appl 2000; 6: 74-83.CrossRefPubMedGoogle Scholar
  20. 20.
    Blount RL, Piira T, Cohen LL. Management of pediatric pain and distress due to medical procedures. In: Roberts MC, editor. Handbook of Pediatric Psychology -. 3rd ed. NY: Guilford Press; 2003. p. 216.Google Scholar
  21. 21.
    Kain ZN, Mayes LC, Caramico LA. Preoperative preparation in children: a cross-sectional study. J Clin Anesth 1996; 8: 508-14.CrossRefPubMedGoogle Scholar
  22. 22.
    Melamed BG, Meyer R, Gee C, Soule L. The influence of time and type of preparation on children’s adjustment to hospitalization. J Pediatr Psychol 1976; 1: 31-7.CrossRefGoogle Scholar
  23. 23.
    Bevan JC, Johnston C, Haig MJ, et al. Preoperative parental anxiety predicts behavioural and emotional responses to induction of anaesthesia in children. Can J Anaesth 1990; 37: 177-82.CrossRefPubMedGoogle Scholar
  24. 24.
    Chorney JM, Kain ZN. Family-centered pediatric perioperative care. Anesthesiology 2010; 112: 751-5.CrossRefPubMedGoogle Scholar
  25. 25.
    Miller TE, Roche AM, Mythen M. Fluid management and goal-directed therapy as an adjunct to enhanced recovery after surgery (ERAS). Can J Anesth 2015; 62: 158-68.CrossRefPubMedGoogle Scholar
  26. 26.
    Lobo DN, Bostock KA, Neal KR, Perkins AC, Rowlands BJ, Allison SP. Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet 2002; 359: 1812-8.CrossRefPubMedGoogle Scholar
  27. 27.
    Gomez-Izquierdo JC, Feldman LS, Carli F, Baldini G. Meta-analysis of the effect of goal-directed therapy on bowel function after abdominal surgery. Br J Surg 2015; 102: 577-89.CrossRefPubMedGoogle Scholar
  28. 28.
    Pearse RM, Harrison DA, MacDonald N, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA 2014; 311: 2181-90.CrossRefPubMedGoogle Scholar
  29. 29.
    Feng C, Sidhwa F, Anandalwar S, et al. Contemporary practice among pediatric surgeons in the use of bowel preparation for elective colorectal surgery: a survey of the American Pediatric Surgical Association. J Pediatr Surg 2015; 50: 1636-40.CrossRefPubMedGoogle Scholar
  30. 30.
    Serrurier K, Liu J, Breckler F, et al. A multicenter evaluation of the role of mechanical bowel preparation in pediatric colostomy takedown. J Pediatr Surg 2012; 47: 190-3.CrossRefPubMedGoogle Scholar
  31. 31.
    Victor D, Burek C, Corbetta JP, et al. Augmentation cystoplasty in children without preoperative mechanical bowel preparation. J Pediatr Urol 2012; 8: 201-4.CrossRefPubMedGoogle Scholar
  32. 32.
    Leys CM, Austin MT, Pietsch JB, Lovvorn HN 3 rd , Pietsch JB. Elective intestinal operations in infants and children without mechanical bowel preparation: a pilot study. J Pediatr Surg 2005; 40: 978-81; discussion 982.Google Scholar
  33. 33.
    Kiran RP, Murray AC, Chiuzan C, Estrada D, Forde K. Combined preoperative mechanical bowel preparation with oral antibiotics significantly reduces surgical site infection, anastomotic leak, and ileus after colorectal surgery. Ann Surg 2015; 262: 416-25; discussion 423-5.Google Scholar
  34. 34.
    Raval MV, Dillon PW, Bruny JL, et al. Pediatric American College of Surgeons National Surgical Quality Improvement Program: feasibility of a novel, prospective assessment of surgical outcomes. J Pediatr Surg 2011; 46: 115-21.CrossRefPubMedGoogle Scholar
  35. 35.
    Feng C, Sidhwa F, Cameron DB, Glass C, Rangel SJ. Rates and burden of surgical site infections associated with pediatric colorectal surgery: insight from the National Surgery Quality Improvement Program. J Pediatr Surg 2016; 51: 970-4.CrossRefPubMedGoogle Scholar
  36. 36.
    Floccari LV, Milbrandt TA. Surgical site infections after pediatric spine surgery. Orthop Clin North Am 2016; 47: 387-94.CrossRefPubMedGoogle Scholar
  37. 37.
    Linam WM, Margolis PA, Staat MA, et al. Risk factors associated with surgical site infection after pediatric posterior spinal fusion procedure. Infect Control Hosp Epidemiol 2009; 30: 109-16.CrossRefPubMedGoogle Scholar
  38. 38.
    Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J Med 1996; 334: 1209-15.CrossRefPubMedGoogle Scholar
  39. 39.
    Ryan SL, Sen A, Staggers K, Luerssen TG, Jea A; Texas Children’s Hospital Spine Study Group. A standardized protocol to reduce pediatric spine surgery infection: a quality improvement initiative. J Neurosurg Pediatr 2014; 14: 259-65.Google Scholar
  40. 40.
    Vitale MG, Riedel MD, Glotzbecker MP, et al. Building consensus: development of a Best Practice Guideline (BPG) for surgical site infection (SSI) prevention in high-risk pediatric spine surgery. J Pediatr Orthop 2013; 33: 471-8.CrossRefPubMedGoogle Scholar
  41. 41.
    Romej M, Voepel-Lewis T, Merkel SI, Reynolds PI, Quinn P. Effect of preemptive acetaminophen on postoperative pain scores and oral fluid intake in pediatric tonsillectomy patients. AANA J 1996; 64: 535-40.PubMedGoogle Scholar
  42. 42.
    Rusy LM, Hainsworth KR, Nelson TJ, et al. Gabapentin use in pediatric spinal fusion patients: a randomized, double-blind, controlled trial. Anesth Analg 2010; 110: 1393-8.CrossRefPubMedGoogle Scholar
  43. 43.
    Lambert P, Cyna AM, Knight N, Middleton P. Clonidine premedication for postoperative analgesia in children. Cochrane Database Syst Rev 2014; 1: CD009633.Google Scholar
  44. 44.
    Kim EM, Lee JR, Koo BN, Im YJ, Oh HJ, Lee JH. Analgesic efficacy of caudal dexamethasone combined with ropivacaine in children undergoing orchiopexy. Br J Anaesth 2014; 112: 885-91.CrossRefPubMedGoogle Scholar
  45. 45.
    Moriarty A. Pediatric epidural analgesia (PEA). Paediatr Anaesth 2012; 22: 51-5.CrossRefPubMedGoogle Scholar
  46. 46.
    Kokinsky E, Thornberg E. Postoperative pain control in children: a guide to drug choice. Paediatr Drugs 2003; 5: 751-62.CrossRefPubMedGoogle Scholar
  47. 47.
    Hahn TW, Mogensen T, Lund C, Schouenborg L, Rasmussen M. High-dose rectal and oral acetaminophen in postoperative patients–serum and saliva concentrations. Acta Anaesthesiol Scand 2000; 44: 302-6.CrossRefPubMedGoogle Scholar
  48. 48.
    Stocker ME, Montgomery JE. Serum paracetamol concentrations in adult volunteers following rectal administration. Br J Anaesth 2001; 87: 638-40.CrossRefPubMedGoogle Scholar
  49. 49.
    Howell TK, Patel D. Plasma paracetamol concentrations after different doses of rectal paracetamol in older children. A comparison of 1 g vs. 40 mg x kg(-1). Anaesthesia 2003; 58: 69-73.CrossRefPubMedGoogle Scholar
  50. 50.
    Alhashemi JA, Daghistani MF. Effect of intraoperative intravenous acetaminophen vs. intramuscular meperidine on pain and discharge time after paediatric dental restoration. Eur J Anaesthesiol 2007; 24: 128-33.CrossRefPubMedGoogle Scholar
  51. 51.
    Alhashemi JA, Daghistani MF. Effects of intraoperative i.v. acetaminophen vs i.m. meperidine on post-tonsillectomy pain in children. Br J Anaesth 2006; 96: 790-5.CrossRefPubMedGoogle Scholar
  52. 52.
    Hong JY, Kim WO, Koo BN, Cho JS, Suk EH, Kil HK. Fentanyl-sparing effect of acetaminophen as a mixture of fentanyl in intravenous parent-/nurse-controlled analgesia after pediatric ureteroneocystostomy. Anesthesiology 2010; 113: 672-7.PubMedGoogle Scholar
  53. 53.
    Gunter JB, Varughese AM, Harrington JF, et al. Recovery and complications after tonsillectomy in children: a comparison of ketorolac and morphine. Anesth Analg 1995; 81: 1136-41.PubMedGoogle Scholar
  54. 54.
    Shay JE, Kattail D, Morad A, Yaster M. The postoperative management of pain from intracranial surgery in pediatric neurosurgical patients. Paediatr Anaesth 2014; 24: 724-33.CrossRefPubMedGoogle Scholar
  55. 55.
    Gornitzky AL, Flynn JM, Muhly WT, Sankar WN. A rapid recovery pathway for adolescent idiopathic scoliosis that improves pain control and reduces time to inpatient recovery after posterior spinal fusion. Spine Deform 2016; 4: 288-95.CrossRefPubMedGoogle Scholar
  56. 56.
    Arora V, Bajwa SJ, Kaur S. Comparative evaluation of recovery characteristics of fentanyl and butorphanol when used as supplement to propofol anaesthesia. Int J Appl Basic Med Res 2012; 2: 97-101.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    National Guideline Clearinghouse. Guideline summary: Best Evidence Statement (BESt). Venous thromboembolism (VTE) prophylaxis in children and adolescents. Updated 2014. Available from URL: (accessed November 2017).Google Scholar
  58. 58.
    Adibe OO, Iqbal CW, Sharp SW, et al. Protocol versus ad libitum feeds after laparoscopic pyloromyotomy: a prospective randomized trial. J Pediatr Surg 2014; 49: 129-32; discussion 132.Google Scholar
  59. 59.
    Xu N, Xue XY, Wei Y, et al. Outcome analysis of tubularized incised plate repair in hypospadias: Is a catheter necessary? Urol Int 2013; 90: 354-7.CrossRefPubMedGoogle Scholar
  60. 60.
    Thomas P, Knott EM, Sharp NE, St Peter SD. Implications of Foley catheterization in children with perforated appendicitis. J Surg Res 2013; 184: 337-40.CrossRefPubMedGoogle Scholar
  61. 61.
    Hechenbleikner EM, Makary MA, Samarov DV, et al. Hospital readmission by method of data collection. J Am Coll Surg 2013; 216: 1150-8.CrossRefPubMedGoogle Scholar
  62. 62.
    Lassen K, Soop M, Nygren J, et al. Consensus review of optimal perioperative care in colorectal surgery: Enhanced Recovery After Surgery (ERAS) Group recommendations. Arch Surg 2009; 144: 961-9.CrossRefPubMedGoogle Scholar
  63. 63.
    Barbieux J, Hamy A, Talbot MF, et al. Does enhanced recovery reduce postoperative ileus after colorectal surgery? J Visc Surg 2017; 154: 79-85.CrossRefPubMedGoogle Scholar
  64. 64.
    Moghadamyeghaneh Z, Hwang GS, Hanna MH, et al. Risk factors for prolonged ileus following colon surgery. Surg Endosc 2016; 30: 603-9.CrossRefPubMedGoogle Scholar
  65. 65.
    Thiele RH, Rea KM, Turrentine FE, et al. Standardization of care: impact of an enhanced recovery protocol on length of stay, complications, and direct costs after colorectal surgery. J Am Coll Surg 2015; 220: 430-43.CrossRefPubMedGoogle Scholar
  66. 66.
    Keenan JE, Speicher PJ, Thacker JK, Walter M, Kuchibhatla M, Mantyh CR. The preventive surgical site infection bundle in colorectal surgery: an effective approach to surgical site infection reduction and health care cost savings. JAMA Surg 2014; 149: 1045-52.CrossRefPubMedGoogle Scholar
  67. 67.
    De Kock M, Loix S, Lavand’homme P. Ketamine and peripheral inflammation. CNS Neurosci Ther 2013; 19: 403-10.CrossRefPubMedGoogle Scholar
  68. 68.
    Budd K. Pain management: is opioid immunosuppression a clinical problem? Biomed Pharmacother 2006; 60: 310-7.CrossRefPubMedGoogle Scholar
  69. 69.
    Colucci DG, Puig NR, Hernandez-Pando R. Influence of anaesthetic drugs on immune response: from inflammation to immunosuppression. OA Anaesthetics 2013; 1: 21.CrossRefGoogle Scholar
  70. 70.
    Elliott MN, Cohea CW, Lehrman WG, et al. Accelerating improvement and narrowing gaps: trends in patients’ experiences with hospital care reflected in HCAHPS public reporting. Health Serv Res 2015; 50: 1850-67.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Gawecka A, Mierzewska-Schmidt M. Tolerance of, and metabolic effects of, preoperative oral carbohydrate administration in children - a preliminary report. Anaesthesiol Intensive Ther 2014; 46: 61-4.CrossRefPubMedGoogle Scholar
  72. 72.
    Sandora TJ, Fung M, Melvin P, Graham DA, Rangel SJ. National variability and appropriateness of surgical antibiotic prophylaxis in US children’s hospitals. JAMA Pediatr 2016; 170: 570-6.CrossRefPubMedGoogle Scholar
  73. 73.
    Slusher J, Bates CA, Johnson C, Williams C, Dasgupta R, von Allmen D. Standardization and improvement of care for pediatric patients with perforated appendicitis. J Pediatr Surg 2014; 49: 1020-4; discussion 1024-5.Google Scholar
  74. 74.
    Goeller JK, Bhalla T, Tobias JD. Combined use of neuraxial and general anesthesia during major abdominal procedures in neonates and infants. Paediatr Anaesth 2014; 24: 553-60.CrossRefPubMedGoogle Scholar
  75. 75.
    Schroeder VA, DiSessa TG, Douglas WI. Postoperative fluid balance influences the need for antihypertensive therapy following coarctation repair. Pediatr Crit Care Med 2004; 5: 539-41.CrossRefPubMedGoogle Scholar
  76. 76.
    Hassinger AB, Wald EL, Goodman DM. Early postoperative fluid overload precedes acute kidney injury and is associated with higher morbidity in pediatric cardiac surgery patients. Pediatr Crit Care Med 2014; 15: 131-8.CrossRefPubMedGoogle Scholar
  77. 77.
    Arndt K. Inadvertent hypothermia in the OR. AORN J 1999; 70: 204-6.CrossRefPubMedGoogle Scholar
  78. 78.
    Sui WY, Ye F, Yang JL. Efficacy of tranexamic acid in reducing allogeneic blood products in adolescent idiopathic scoliosis surgery. BMC Musculoskelet Disord 2016; 17: 187.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Ganesh A, Watcha MF. Bispectral index monitoring in pediatric anesthesia. Curr Opin Anaesthesiol 2004; 17: 229-34.CrossRefPubMedGoogle Scholar
  80. 80.
    Denman WT, Swanson EL, Rosow D, Ezbicki K, Connors PD, Rosow CE. Pediatric evaluation of the bispectral index (BIS) monitor and correlation of BIS with end-tidal sevoflurane concentration in infants and children. Anesth Analg 2000; 90: 872-7.CrossRefPubMedGoogle Scholar
  81. 81.
    Davis PJ, Cladis FP. Smith’s Anesthesia for Infants and Children, 9th Edition. Elsevier; 2016.Google Scholar
  82. 82.
    Ziolkowski K, Kaufman J, Jambunathan J, et al. The clinical use of intravenous acetaminophen postoperatively on patients who have undergone bowel surgery. AORN J 2015; 102: 515.e1-10.Google Scholar
  83. 83.
    West MA, Horwood JF, Staves S, et al. Potential benefits of fast-track concepts in paediatric colorectal surgery. J Pediatr Surg 2013; 48: 1924-30.CrossRefPubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists' Society 2017

Authors and Affiliations

  • Jessica A. George
    • 1
    • 2
  • Rahul Koka
    • 1
    • 2
  • Tong J. Gan
    • 3
  • Eric Jelin
    • 4
  • Emily F. Boss
    • 5
  • Val Strockbine
    • 4
  • Deborah Hobson
    • 6
  • Elizabeth C. Wick
    • 6
  • Christopher L. Wu
    • 1
  1. 1.The Department of Anesthesiology and Critical Care MedicineThe Johns Hopkins University and School of MedicineBaltimoreUSA
  2. 2.SOM Anes Pediatric AnesthesiologyBaltimoreUSA
  3. 3.Department of AnesthesiologyStony Brook UniversityStony BrookUSA
  4. 4.Department of General Pediatric SurgeryJohns Hopkins Bloomberg Children’s Center and Johns Hopkins University, School of MedicineBaltimoreUSA
  5. 5.Department of Otolaryngology-Head and Neck Surgery and Health Policy & ManagementJohns Hopkins University, School of Medicine and Bloomberg School of Public HealthBaltimoreUSA
  6. 6.Department of SurgeryThe Johns Hopkins Hospital and Johns Hopkins University, School of MedicineBaltimoreUSA

Personalised recommendations