Advertisement

Ocean Science Journal

, Volume 53, Issue 3, pp 437–448 | Cite as

Acidification at the Surface in the East Sea: A Coupled Climate-carbon Cycle Model Study

  • Young-Gyu Park
  • Kyung-Hee Seol
  • Kyung-On Boo
  • Johan Lee
  • Chunho Cho
  • Young-Hwa Byun
  • Seongbong Seo
Article

Abstract

This modeling study investigates the impacts of increasing atmospheric CO2 concentration on acidification in the East Sea. A historical simulation for the past three decades (1980 to 2010) was performed using the Hadley Centre Global Environmental Model (version 2), a coupled climate model with atmospheric, terrestrial and ocean cycles. As the atmospheric CO2 concentration increased, acidification progressed in the surface waters of the marginal sea. The acidification was similar in magnitude to observations and models of acidification in the global ocean. However, in the global ocean, the acidification appears to be due to increased in-situ oceanic CO2 uptake, whereas local processes had stronger effects in the East Sea. pH was lowered by surface warming and by the influx of water with higher dissolved inorganic carbon (DIC) from the northwestern Pacific. Due to the enhanced advection of DIC, the partial pressure of CO2 increased faster than in the overlying air; consequently, the in-situ oceanic uptake of CO2 decreased.

Keywords

biogeochemical modeling surface pH East Sea ocean acidification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakun A (1990) Global climate change and intensification of coastal ocean upwelling. Science 247:198–201. doi:10.1126/science. 247.4939.198CrossRefGoogle Scholar
  2. Broecker WS, Takahashi T, Simpson HJ, Peng TH (1979) Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206(4417):409–418CrossRefGoogle Scholar
  3. Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425(6956):365CrossRefGoogle Scholar
  4. Choi AR, Park YG, Choi HJ (2013) Changes in the Tsushima Warm Current and the impact under a global warming scenario in coupled climate models. Ocean Polar Res 35(2):127–134. doi:10.4217/OPR.2013.35.2.127 (in Korean)CrossRefGoogle Scholar
  5. Choi SH, Kim D, Shim J, Kim KH, Min HS, Kim KR (2012) Seasonal variations of surface fCO2 and sea-air CO2 fluxes in the Ulleung Basin of the East/Japan Sea. Terr Atmos Ocean Sci 23(3):343–353. doi:10.3319/TAO.2012.01.19.01(Oc)CrossRefGoogle Scholar
  6. Chou WC, Gong GC, Tseng CM, Sheu DD, Hung CC, Chang LP, Wang LW (2011) The carbonate system in the East China Sea in winter. Mar Chem 123(1):44–55CrossRefGoogle Scholar
  7. Coleman K, Jenkinson DS (1996) RothC-26.3-A Model for the turnover of carbon in soil. In: Powlson DS, Smith P, Smith JU (eds) Evaluation of soil organic matter models. Springer, Berlin/Heidelberg, pp 237–246CrossRefGoogle Scholar
  8. Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S (2011) Development and evaluation of an Earth-system model–HadGEM2. Geosci Model Dev Discuss 4(2):997–1062CrossRefGoogle Scholar
  9. Cox PM (2001) Description of the TRIFFID dynamic global vegetation model. Met Office Hadley Centre, Berks, Hadley Centre technical note 24, 16 pGoogle Scholar
  10. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192CrossRefGoogle Scholar
  11. Dore JE, Lukas R, Sadler DW, Church MJ, Karl DM (2009) Physical and biogeochemical modulation of ocean acidification in the central North Pacific. P Natl Acad Sci USA 106(30):12235–12240. doi:10.1073/pnas.0906044106CrossRefGoogle Scholar
  12. Egleston ES, Sabine CL, Morel FM (2010) Revelle revisited: buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Global Biogeochem Cy 24:GB1002. doi:10.1029/2008GB003407CrossRefGoogle Scholar
  13. Feely RA, Doney SC, Cooley SR (2009) Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22(4):36–47CrossRefGoogle Scholar
  14. Gruber N, Gloor M, Mikaloff Fletcher SE, Doney SC, Dutkiewicz S, Follows MJ, Gerber M, Jacobson AR, Joos F, Lindsay K, Menemenlis D, Mouchet A, Müller SA, Sarmiento JL, Takahashi T (2009) Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochem Cy 23:GB1005. doi:10.1029/2008GB003349CrossRefGoogle Scholar
  15. Halloran PR, Bell TG, Totterdell IJ (2010) Can we trust empirical marine DMS parameterisations within projections of future climate? Biogeosciences 7(5):1645–1656CrossRefGoogle Scholar
  16. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318(5857): 1737–1742CrossRefGoogle Scholar
  17. IPCC (2007) Climate Change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, 104 pGoogle Scholar
  18. Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. NSF, NOAA, USGS, Report of a Workshop Held 18–20 April 2005, St. Petersburg, Florida, 88 pGoogle Scholar
  19. Kim D, Choi SH, Shim J, Kim KH, Kim CH (2013) Revisiting the seasonal variations of sea-air CO2 fluxes in the northern East China Sea. Terr Atmos Ocean Sci 24:409–419. doi:10.3319/TAO.2012.12.06.01(Oc)CrossRefGoogle Scholar
  20. Kim JY, Kang DJ, Lee T, Kim KR (2014) Long-term trend of CO2 and ocean acidification in the surface water of the Ulleung Basin, the East/Japan Sea East/Japan Sea inferred from the underway observational data. Biogeosciences 11:2443–2454. doi:10.5194/bg-11-2443-2014CrossRefGoogle Scholar
  21. Kwon EY, Kim YH, Park YG, Park YH, Dunne J, Chang KI (2016) Multidecadal wind-driven shifts in northwest Pacific temperature, salinity, O2, and PO4. Global Biogeochem Cy 30(11):1599–1619. doi:10.1002/2016GB005442CrossRefGoogle Scholar
  22. Lachkar Z (2014) Effects of upwelling increase on ocean acidification in the California and Canary Current systems. Geophys Res Lett 41:90–95. doi:10.1002/2013GL058726CrossRefGoogle Scholar
  23. Leduc G, Herbert CT, Blanz T, Martinez P, Schneider R (2010) Contrasting evolution of sea surface temperature in the Benguela upwelling system under natural and anthropogenic climate forcings. Geophys Res Lett 37(20):L20705CrossRefGoogle Scholar
  24. Lenton A, Codron F, Bopp L, Metzl N, Cadule P, Tagliabue A, Le Sommer J (2009) Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification. Geophys Res Lett 36(12):L12606. doi:10.1029/2009GL038227CrossRefGoogle Scholar
  25. Le Quéré C, Raupach MR, Canadell JG, Marland G (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836CrossRefGoogle Scholar
  26. Liang WD, Tang TY, Yang YJ, Ko MT, Chuang WS (2003) Upperocean currents around Taiwan. Deep-Sea Res Pt II 50(6–7):1085–1105CrossRefGoogle Scholar
  27. McGregor HV, Dima M, Fischer HW, Mulitza S (2007) Rapid 20th-century increase in coastal upwelling off northwest Africa. Science 315(5812):637–639CrossRefGoogle Scholar
  28. Midorikawa T, Ishii M, Saito S, Sasano D, Kosugi N, Motoi T, Kamiya H, Nakadate A, Nemoto K, Inoue HY (2010) Decreasing pH trend estimated from 25-yr time series of carbonate parameters in the western North Pacific. Tellus B 62:649–659. doi:10.1111/j.1600-0889.2010.00474.xCrossRefGoogle Scholar
  29. Nakano H, Tsujino H, Hirabara M, Yasuda T, Motoi T, Ishii M, Yamanaka G (2011) Uptake mechanism of anthropogenic CO2 in the Kuroshio Extension region in an ocean general circulation model. J Oceanogr 67(6):765–783CrossRefGoogle Scholar
  30. Oh DC, Park MK, Choi SH, Kang DJ, Park SY, Hwang JS, Andreev A, Hong GH, Kim KR (1999) The air-sea exchange of CO2 in the East Sea (Japan Sea). J Oceanogr 55:157–169CrossRefGoogle Scholar
  31. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Ganadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twentyfirst century and its impact on calcifying organisms. Nature 437:681–686CrossRefGoogle Scholar
  32. Palmer JR, Totterdell IJ (2001) Production and export in a global ocean ecosystem model. Deep-Sea Res Pt I 48(5):1169–1198. doi:10.1016/S0967-0637(00)00080-7CrossRefGoogle Scholar
  33. Park GH, Lee K, Tishchenko P, Min DH, Warner MJ, Talley LD, Kang DJ, Kim KR (2006) Large accumulation of anthropogenic CO2 in the East (Japan) Sea and its significant impact on carbonate chemistry, Global Biogeochem Cy 20:GB4013. doi:10.1029/2005GB002676CrossRefGoogle Scholar
  34. Park GH, Lee K, Tishchenko P (2008) Sudden, considerable reduction in recent uptake of anthropogenic CO2 by the East/Japan Sea. Geophys Res Lett 35(23):L23611. doi:10.1029/2008GL036118Google Scholar
  35. Park YG (2007) The effects of Tsushima Warm Current on the interdecadal variability of the East/Japan Sea thermohaline circulation. Geophys Res Lett 34(6):L06609. doi:10.1029/2006GL029210Google Scholar
  36. Peng TH, Hung JJ, Wanninkhof R, Millero F (1999) Carbon budget in the East China Sea in spring. Tellus B 51(2):531–540CrossRefGoogle Scholar
  37. Raven J, Caldeira K, Elderfield H, Hoegh-Guldberg O, Liss P, Riebesell U, Shepherd J, Turley C, Watson A (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society, London, 57 pGoogle Scholar
  38. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670Google Scholar
  39. Revelle R, Suess HE (1957) Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9:18–27CrossRefGoogle Scholar
  40. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371CrossRefGoogle Scholar
  41. Sarmiento JL, Gloor M, Gruber N, Beaulieu C, Jacobson AR, Mikaloff Fletcher SE, Pacala S, Rodgers K (2010) Trends and regional distributions of land and ocean carbon sinks. Biogeosciences 7(8):2351–2367CrossRefGoogle Scholar
  42. Sung C-G, Kim TW, Park Y-G, Kang S-G, Inaba K, Shiba K, Choi TS, Moon S-D, Litvin S, Lee K-T, Lee J-S (2014) Species and gamete-specific fertilization success of two sea urchins under near future levels of pCO2. J Marine Syst 137:67–73CrossRefGoogle Scholar
  43. Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker DCE, Schuster U, Metzl N, Yoshikawa-Inoue H, Olafsson J, Arnarson TS, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong CS, Delille B, Bates NN, De Baar HJ (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res Pt II 56(8):554–577CrossRefGoogle Scholar
  44. Takikawa T, Yoon JH (2005) Volume transport through the Tsushima Straits estimated from sea level difference. J Oceanogr 61:699–708CrossRefGoogle Scholar
  45. Teague WJ, Jacobs GA, Perkins HT, Book JW, Chang KI, Suk MS (2002) Low-frequency current observations in the Korea/Tsushima Strait. J Phys Oceanogr 32(6):1621–1641CrossRefGoogle Scholar
  46. The HadGEM2 Development Team (2011) The HadGEM2 family of Met Office Unified Model Climate configurations. Geosci Model Dev 4:723–757. doi:10.5194/gmd-4-723-2011CrossRefGoogle Scholar
  47. Tishchenko PY, Talley LD, Lobanov VB, Zhabin IA, Luchin VA, Nedashkovskii AP, Sagalaev SG, Chichkin RV, Shkirnikova EM, Ponomarev VI, Masten D, Kang DJ, Kim KR (2003) Seasonal variability of the hydrochemical conditions in the Sea of Japan. Oceanology+ 43(5):643–655Google Scholar
  48. Tsunogai S, Watanabe S, Sato T (1999) Is there a “continental shelf pump” for the absorption of atmospheric CO2? Tellus B 51:701–712. doi:10.1034/j.1600-0889.1999.t01-2-00010.xCrossRefGoogle Scholar
  49. Yang Y, Liu CT (2003) Uncertainty reduction of estimated geostrophic volume transports with altimeter observations east of Taiwan. J Oceanogr 59(2):251–257CrossRefGoogle Scholar
  50. Wang SL, Arthur Chen CT, Hong GH, Chung CS (2000) Carbonoxide and related parameters in the East China Sea. Cont Shelf Res 20(4):525–544CrossRefGoogle Scholar
  51. Wang YH, Jan S, Wang DP (2003) Transports and tidal current estimates in the Taiwan Strait from shipboard ADCP observations (1999–2001). Estuar Coast Shelf S 57(1):193–199CrossRefGoogle Scholar
  52. Yeh SW, Park YG, Min HS, Kim CH, Lee JH (2010) Analysis of characteristics in the sea surface temperature variability in the East/Japan Sea. Prog Oceanogr 85(3):213–223. doi:10.1016/j.pocean.2010.03.001CrossRefGoogle Scholar
  53. Zhai W, Dai M (2009) On the seasonal variation of air–sea CO2 fluxes in the outer Changjiang (Yangtze River) Estuary, East China Sea. Mar Chem 117(1):2–10CrossRefGoogle Scholar

Copyright information

© Korea Institute of Ocean Science & Technology (KIOST) and the Korean Society of Oceanography (KSO) and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Young-Gyu Park
    • 1
    • 2
  • Kyung-Hee Seol
    • 3
  • Kyung-On Boo
    • 4
  • Johan Lee
    • 4
  • Chunho Cho
    • 4
  • Young-Hwa Byun
    • 4
  • Seongbong Seo
    • 1
    • 2
  1. 1.Physical Oceanography DivisionKIOSTBusanKorea
  2. 2.Department of Integrated Ocean ScienceUniversity of Science & TechnologyDaejeonKorea
  3. 3.Forecast DivisionKorea Institute of Atmospheric Prediction SystemsSeoulKorea
  4. 4.National Institute of Meteorological SciencesKorea Meteorological AdministrationSeogwipoKorea

Personalised recommendations