Rare Metals

, Volume 37, Issue 4, pp 259–273 | Cite as

BiCuSeO as state-of-the-art thermoelectric materials for energy conversion: from thin films to bulks

  • Rui Liu
  • Xing Tan
  • Yao-Chun Liu
  • Guang-Kun Ren
  • Jin-Le Lan
  • Zhi-Fang Zhou
  • Ce-Wen Nan
  • Yuan-Hua Lin


BiCuSeO-based thermoelectric material has attracted great attention as state-of-the-art thermoelectric materials since it was first reported in 2010. In this review, we update the studies on the BiCuSeO thin films first. Then, we focus on the most recent progress of multiple approaches that enhance the thermoelectric performance including advanced synthesized technologies, notable mechanisms for higher power factor (optimizing carrier concentration, carrier mobility, Seebeck coefficient) and doping effects predicted by calculation. And finally, aiming at further enhancing the performance of these materials and ultimately commercial application, we give a brief discussion on the urgent issues to which should be paid close attention.


BiCuSeO State-of-the-art thermoelectric materials Thin films Bulks 



This work was financially supported by the National Key Research Programme of China (No. 2016YFA0201003), the National Basic Research Program of China (No. 2013CB632506), the National Natural Science Foundation of China (No. 51772016), the National Natural Science Foundation of China (Nos. 51672155, 51532003) and China Postdoctoral Science Foundation (No. 2016M601020).


  1. [1]
    Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 2008;321(5895):1457.CrossRefGoogle Scholar
  2. [2]
    Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7(2):105.CrossRefGoogle Scholar
  3. [3]
    Shakouri A. Recent developments in semiconductor thermoelectric physics and materials. Annu Rev Mater Res. 2011;41(1):399.CrossRefGoogle Scholar
  4. [4]
    He J, Tritt TM. Advances in thermoelectric materials research: looking back and moving forward. Science. 2017;357(6358):eaak9997.CrossRefGoogle Scholar
  5. [5]
    Su X, Wei P, Li H, Liu W, Yan Y, Li P, Su C, Xie C, Zhao W, Zhai P, Zhang Q, Tang X, Uher C. Multi-scale microstructural thermoelectric materials: transport behavior, non-equilibrium preparation, and applications. Adv Mater. 2017;29(20):1602013.CrossRefGoogle Scholar
  6. [6]
    Hu L, Zhu T, Liu X, Zhao X. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv Funct Mater. 2014;24(33):5211.CrossRefGoogle Scholar
  7. [7]
    Hu L, Wu H, Zhu T, Fu C, He J, Ying P, Zhao X. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Adv Energy Mater. 2015;5(17):1500411.CrossRefGoogle Scholar
  8. [8]
    Zhu T, Hu L, Zhao X, He J. New insights into intrinsic point defects in V2VI3 thermoelectric materials. Adv Sci. 2016;3(7):1600004.CrossRefGoogle Scholar
  9. [9]
    Pei Y, Lensch-Falk J, Toberer ES, Medlin DL, Snyder GJ. High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Adv Funct Mater. 2011;21(2):241.CrossRefGoogle Scholar
  10. [10]
    Wu CF, Wang H, Yan Q, Wei TR, Li JF. Doping of thermoelectric PbSe with chemically inert secondary phase nanoparticles. J Mater Chem C. 2017;5(41):10881.CrossRefGoogle Scholar
  11. [11]
    Zhang K, Zhang Q, Wang L, Jiang W, Chen L. Enhanced thermoelectric performance of Se-doped PbTe bulk materials via nanostructuring and multi-scale hierarchical architecture. J Alloys Compd. 2017;725(S):563.Google Scholar
  12. [12]
    Shi X, Yang J, Salvador JR, Chi M, Cho JY, Wang H, Bai S, Yang J, Zhang W, Chen L. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc. 2011;133(20):7837.CrossRefGoogle Scholar
  13. [13]
    Koumoto K, Wang Y, Zhang R, Kosuga A, Funahashi R. Oxide thermoelectric materials: a nanostructuring approach. Annu Rev Mater Res. 2010;40(1):363.CrossRefGoogle Scholar
  14. [14]
    He J, Liu Y, Funahashi R. Oxide thermoelectrics: the challenges, progress, and outlook. J Mater Res. 2011;26(15):1762.CrossRefGoogle Scholar
  15. [15]
    Zhao LD, Berardan D, Pei YL, Byl C, Pinsard-Gaudart L, Dragoe N. Bi1−xSrxCuSeO oxyselenides as promising thermoelectric materials. Appl Phys Lett. 2010;97(9):092118.CrossRefGoogle Scholar
  16. [16]
    Lan JL, Zhan B, Liu YC, Zheng B, Liu Y, Lin YH, Nan CW. Doping for higher thermoelectric properties in p-type BiCuSeO oxyselenide. Appl Phys Lett. 2013;102(12):123905.CrossRefGoogle Scholar
  17. [17]
    Jingxuan D, Ben X, Yuanhua L, Cewen N, Wei L. Lattice vibration modes of the layered material BiCuSeO and first principles study of its thermoelectric properties. New J Phys. 2015;17(8):083012.CrossRefGoogle Scholar
  18. [18]
    Saha SK. Exploring the origin of ultralow thermal conductivity in layered BiOCuSe. Phys Rev B. 2015;92(4):041202.CrossRefGoogle Scholar
  19. [19]
    Vaqueiro P, Al Orabi RAR, Luu SDN, Guelou G, Powell AV, Smith RI, Song JP, Wee D, Fornari M. The role of copper in the thermal conductivity of thermoelectric oxychalcogenides: do lone pairs matter? Phys Chem Chem Phys. 2015;17(47):31735.CrossRefGoogle Scholar
  20. [20]
    Ji HS, Togo A, Kaviany M, Tanaka I, Shim JH. Low phonon conductivity of layered BiCuOS, BiCuOSe, and BiCuOTe from first principles. Phys Rev B. 2016;94(11):115203.CrossRefGoogle Scholar
  21. [21]
    Kumar S, Schwingenschlogl U. Lattice thermal conductivity in layered BiCuSeO. Phys Chem Chem Phys. 2016;18(28):19158.CrossRefGoogle Scholar
  22. [22]
    Zhao LD, He J, Berardan D, Lin Y, Li JF, Nan CW, Dragoe N. BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Environ Sci. 2014;7(9):2900.CrossRefGoogle Scholar
  23. [23]
    Zhang X, Chang C, Zhou Y, Zhao LD. BiCuSeO thermoelectrics: an update on recent progress and perspective. Materials (Basel). 2017;10(2):198.CrossRefGoogle Scholar
  24. [24]
    Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature. 2001;413:597.CrossRefGoogle Scholar
  25. [25]
    Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat Mater. 2007;6(2):129.CrossRefGoogle Scholar
  26. [26]
    Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science. 2008;320(5876):634.CrossRefGoogle Scholar
  27. [27]
    Boyer A, Cissé E. Properties of thin film thermoelectric materials: application to sensors using the Seebeck effect. Mater Sci Eng B. 1992;13(2):103.CrossRefGoogle Scholar
  28. [28]
    Mzerd A, Aboulfarah B, Giani A, Boyer A. Elaboration and characterization of MOCVD (Bi1−xSbx)2Te3 thin films. J Mater Sci. 2006;41(5):1659.CrossRefGoogle Scholar
  29. [29]
    Scheele M, Oeschler N, Veremchuk I, Reinsberg K-G, Kreuziger A-M, Kornowski A, Kornowski A, Broekaert J, Klinke C, Weller H. ZT enhancement in solution-grown Sb(2−x)BixTe3 nanoplatelets. ACS Nano. 2010;4(7):4283.CrossRefGoogle Scholar
  30. [30]
    Wu X, Wang JL, Zhang H, Wang S, Zhai S, Li Y, Elhadj D, Fu G. Epitaxial growth and thermoelectric properties of c-axis oriented Bi1−xPbxCuSeO single crystalline thin films. CrystEngComm. 2015;17(45):8697.CrossRefGoogle Scholar
  31. [31]
    Wu X, Gao L, Roussel P, Dogheche E, Wang J, Fu G, Wang S. Growth of c-axis-oriented BiCuSeO thin films directly on Si wafers. J Am Ceram Soc. 2016;99(10):3367.CrossRefGoogle Scholar
  32. [32]
    Fan H, Su T, Li H, Li S, Hu M, Liu B, Du B, Ma H, Jia X. Enhanced low temperature thermoelectric performance and weakly temperature-dependent figure-of-merit values of PbTe–PbSe solid solutions. J Alloys Compd. 2016;658(S):885.CrossRefGoogle Scholar
  33. [33]
    Su T, Jia X, Ma H, Yu F, Tian Y, Zuo G, Zheng Y, Jiang Y, Dong D, Deng L, Qin B, Zheng S. Enhanced thermoelectric performance of AgSbTe2 synthesized by high pressure and high temperature. J Appl Phys. 2009;105(7):073713.CrossRefGoogle Scholar
  34. [34]
    Sun H, Jia X, Deng L, Lv P, Guo X, Zhang Y, Sun B, Liu B, Ma H. Effect of HPHT processing on the structure, and thermoelectric properties of Co4Sb12 co-doped with Te and Sn. J Mater Chem A. 2015;3(8):4637.CrossRefGoogle Scholar
  35. [35]
    Zhu H, Su T, Li H, Pu C, Zhou D, Zhu P, Wang X. High pressure synthesis, structure and thermoelectric properties of BiCuChO (Ch = S, Se, Te). J Eur Ceram Soc. 2017;37(4):1541.CrossRefGoogle Scholar
  36. [36]
    Fan FJ, Yu B, Wang YX, Zhu YL, Liu XJ, Yu SH, Ren Z. Colloidal synthesis of Cu2CdSnSe4 nanocrystals and hot-pressing to enhance the thermoelectric figure-of-merit. J Am Chem Soc. 2011;133(40):15910.CrossRefGoogle Scholar
  37. [37]
    Ciriminna R, Fidalgo A, Pandarus V, Béland F, Ilharco LM, Pagliaro M. The sol–gel route to advanced silica-based materials and recent applications. Chem Rev. 2013;113(8):6592.CrossRefGoogle Scholar
  38. [38]
    Bhaskar A, Lai RT, Chang KC, Liu CJ. High thermoelectric performance of BiCuSeO prepared by solid state reaction and sol–gel process. Scr Mater. 2017;134:100.CrossRefGoogle Scholar
  39. [39]
    Li J, Sui J, Pei Y, Barreteau C, Berardan D, Dragoe N, Cai W, He J, Zhao LD. A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ Sci. 2012;5(9):8543.CrossRefGoogle Scholar
  40. [40]
    Liu Y, Zhao LD, Liu Y, Lan J, Xu W, Li F, Zhang BP, Berardan D, Dragoe N, Lin YH, Nan CW, Li JF, Zhu H. Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies. J Am Chem Soc. 2011;133(50):20112.CrossRefGoogle Scholar
  41. [41]
    Li F, Li JF, Zhao LD, Xiang K, Liu Y, Zhang BP, Lin YH, Nan CW, Zhu H. Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energy Environ Sci. 2012;5(5):7188.CrossRefGoogle Scholar
  42. [42]
    Lan JL, Liu YC, Zhan B, Lin YH, Zhang B, Yuan X, Zhang W, Xu W, Nan CW. Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics. Adv Mater. 2013;25(36):5086.CrossRefGoogle Scholar
  43. [43]
    Suryanarayana C, Ivanov E, Boldyrev VV. The science and technology of mechanical alloying. Mater Sci Eng A. 2001;304–306(S):151.CrossRefGoogle Scholar
  44. [44]
    Wu J, Li F, Wei TR, Ge Z, Kang F, He J, Li JF. Mechanical alloying and spark plasma sintering of BiCuSeO oxyselenide: synthesis process and thermoelectric properties. J Am Ceram Soc. 2016;99(2):507.CrossRefGoogle Scholar
  45. [45]
    Su X, Fu F, Yan Y, Zheng G, Liang T, Zhang Q, Cheng X, Yang D, Chi H, Tang X, Zhang Q, Uher C. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. Nat Commun. 2014;5:4908.CrossRefGoogle Scholar
  46. [46]
    Ren GK, Lan JL, Butt S, Ventura KJ, Lin YH, Nan CW. Enhanced thermoelectric properties in Pb-doped BiCuSeO oxyselenides prepared by ultrafast synthesis. RSC Adv. 2015;5(85):69878.CrossRefGoogle Scholar
  47. [47]
    Luu SDN, Vaqueiro P. Synthesis, structural characterisation and thermoelectric properties of Bi1−xPbxOCuSe. J Mater Chem A. 2013;1(39):12270.CrossRefGoogle Scholar
  48. [48]
    Ren GK, Wang SY, Zhu YC, Ventura KJ, Tan X, Xu W, Lin YH, Yang J, Nan CW. Enhancing thermoelectric performance in hierarchically structured BiCuSeO by increasing bond covalency and weakening carrier–phonon coupling. Energy Environ Sci. 2017;10(7):1590.CrossRefGoogle Scholar
  49. [49]
    Li F, Wei TR, Kang F, Li JF. Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature range. J Mater Chem A. 2013;1(38):11942.CrossRefGoogle Scholar
  50. [50]
    Lan JL, Deng C, Ma W, Ren GK, Lin YH, Yang X. Ultra-fast synthesis and high thermoelectric properties of heavy sodium doped BiCuSeO. J Alloy Compd. 2017;708:955.CrossRefGoogle Scholar
  51. [51]
    Lan JL, Ma W, Deng C, Ren GK, Lin YH, Yang X. High thermoelectric performance of Bi1−xKxCuSeO prepared by combustion synthesis. J Mater Sci. 2017;52(19):11569.CrossRefGoogle Scholar
  52. [52]
    Li Z, Xiao C, Fan S, Deng Y, Zhang W, Ye B, Xie Y. Dual vacancies: an effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO. J Am Chem Soc. 2015;137(20):6587.CrossRefGoogle Scholar
  53. [53]
    Hiramatsu H, Yanagi H, Kamiya T, Ueda K, Hirano M, Hosono H. Crystal structures, optoelectronic properties, and electronic structures of layered oxychalcogenides MCuOCh (M = Bi, La; Ch = S, Se, Te): effects of electronic configurations of M3+ ions. Chem Mater. 2008;20(1):326.CrossRefGoogle Scholar
  54. [54]
    Liu Y, Lan J, Xu W, Liu Y, Pei YL, Cheng B, Liu DB, Lin YH, Zhao LD. Enhanced thermoelectric performance of a BiCuSeO system via band gap tuning. Chem Commun (Camb). 2013;49(73):8075.CrossRefGoogle Scholar
  55. [55]
    Feng B, Li G, Hou Y, Zhang C, Jiang C, Hu J, Xiang Q, Li Y, He Z, Fan X. Enhanced thermoelectric properties of Sb-doped BiCuSeO due to decreased band gap. J Alloy Compd. 2017;712:386.CrossRefGoogle Scholar
  56. [56]
    Liu Y, Ding J, Xu B, Lan J, Zheng Y, Zhan B, Zhang B, Lin Y, Nan C. Enhanced thermoelectric performance of La-doped BiCuSeO by tuning band structure. Appl Phys Lett. 2015;106(23):233903.CrossRefGoogle Scholar
  57. [57]
    Pei YL, Wu H, Wu D, Zheng F, He J. High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. J Am Chem Soc. 2014;136(39):13902.CrossRefGoogle Scholar
  58. [58]
    Sui J, Li J, He J, Pei YL, Berardan D, Wu H, Dragoe N, Cai W, Zhao LD. Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides. Energy Environ Sci. 2013;6(10):2916.CrossRefGoogle Scholar
  59. [59]
    Wen Q, Chang C, Pan L, Li X, Yang T, Guo H, Wang Z, Zhang J, Xu F, Zhang Z, Tang G. Enhanced thermoelectric performance of BiCuSeO by increasing Seebeck coefficient through magnetic ion incorporation. J Mater Chem A. 2017;5(26):13392.CrossRefGoogle Scholar
  60. [60]
    Wang Y, Rogado NS, Cava RJ, Ong NP. Spin entropy as the likely source of enhanced thermopower in NaxCo2O4. Nature. 2003;423(6938):425.CrossRefGoogle Scholar
  61. [61]
    Shen J, Chen Y. Silicon as an unexpected n-type dopant in BiCuSeO thermoelectrics. ACS Appl Mater Interfaces. 2017;9(33):27372.CrossRefGoogle Scholar
  62. [62]
    Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science. 2008;321(5888):554.CrossRefGoogle Scholar
  63. [63]
    Yu B, Zhang Q, Wang H, Wang X, Wang H, Wang D, Wang H, Snyder GJ, Chen G, Ren ZF. Thermoelectric property studies on thallium-doped lead telluride prepared by ball milling and hot pressing. J Appl Phys. 2010;108(1):016104.CrossRefGoogle Scholar
  64. [64]
    Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K, Chen G, Ren Z. Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. Energy Environ Sci. 2012;5(1):5246.CrossRefGoogle Scholar
  65. [65]
    Heremans JP, Wiendlocha B, Chamoire AM. Resonant levels in bulk thermoelectric semiconductors. Energy Environ Sci. 2012;5(2):5510.CrossRefGoogle Scholar
  66. [66]
    Shen J, Yu H, Pei Y, Chen Y. Resonant doping in BiCuSeO thermoelectrics from first principles. J Mater Chem A. 2017;5(3):931.CrossRefGoogle Scholar
  67. [67]
    Zhou Z, Tan X, Ren G, Lin Y, Nan C. Thermoelectric properties of Cl-doped BiCuSeO oxyselenides. J Electron Mater. 2017;46(5):2593.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations