Skip to main content

Advertisement

Log in

Variations in Composition of Alkanes and Free Fatty Acids in Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) on Exposure to Monocrotophos

  • Research Article
  • Published:
Proceedings of the Zoological Society Aims and scope Submit manuscript

Abstract

Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) is an important herbivore pest of cucurbitaceae, which is currently controlled by insecticides in southeast Asia. The insect cuticle is the first line of defence against insecticides. So, we investigated the variations in the composition of n-alkanes and free fatty acids (FFAs) in cuticular and internal lipids of A. foveicollis males and females exposed to monocrotophos compared to untreated adults. Both sexes of A. foveicollis adults were dipped in petroleum ether for 1 min at room temperature for extraction of surface waxes, and the insects were further kept in dichloromethane for 15 days for extraction of internal lipids. n-Alkanes and FFAs of cuticular and internal lipids were identified and quantified by GC–MS and GC–FID analyses. Higher quantities of cuticular lipids were observed in males and females exposed to monocrotophos than untreated males and females. Twenty n-alkanes were identified between n-C15 and n-C36 in cuticular lipids of untreated A. foveicollis adults; whereas 21 n-alkanes were detected in cuticular lipids of treated adults. Nineteen FFAs were recorded between C10:0 and C22:0 in cuticular lipids of untreated adults; whereas 21 and 19 FFAs were recorded in cuticular lipids of treated males and females, respectively. Hentriacontane and palmitoleic acid were the predominant n-alkane and FFA in the cuticular lipids of treated males and females, respectively. This study revealed that change of alkanes and FFAs in cuticular lipids of A. foveicollis males and females are linked to exposure to monocrtophos, which might result in increasing resistance of A. foveicollis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adhikary, P., A. Mukherjee, and A. Barik. 2015. Attraction of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) to four varieties of Lathyrus sativus L. seed volatiles. Bulletin of Entomological Research 105: 187–201.

    Article  CAS  PubMed  Google Scholar 

  • Agrahari, S., K.C. Pandey, and K. Gopal. 2007. Biochemical alteration induced by monocrotophos in the blood plasma of fish, Channa punctatus (Bloch). Pesticide Biochemistry and Physiology 88: 268–272.

    Article  CAS  Google Scholar 

  • Ahmad, M., I.M. Arif, and Z. Ahmad. 1995. Monitoring insecticide resistance of Helicoverpa armigera (Lepidoptera: Noctuidae) in Pakistan. Journal of Economic Entomology 88: 771–776.

    Article  CAS  Google Scholar 

  • Akino, T., K. Yamamura, S. Wakamura, and R. Yamaoka. 2004. Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (Hymenoptera: Formicidae). Applied Entomology and Zoology 39: 381–387.

    Article  CAS  Google Scholar 

  • Blomquist, G.J., and A.-G. Bagnères. 2010. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Chakravarthi, B.K., R. Naravaneni, G.H. Philip, and C.S. Reddy. 2009. Investigation of monocrotophos toxic effects on human lymphocytes at cytogenetic level. African Journal of Biotechnology 8: 2042–2046.

    Google Scholar 

  • Chung, H., and S.B. Carroll. 2015. Wax, sex and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays 37: 822–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dujaković, N., S. Grujić, M. Radisić, T. Vasiljević, and M. Lausević. 2010. Determination of pesticides in surface and ground waters by liquid chromatography–electrospray–tandem mass spectrometry. Analytica Chimica Acta 678: 63–72.

    Article  CAS  PubMed  Google Scholar 

  • Gibbs, A., and J.G. Pomonis. 1995. Physical properties of insect cuticular hydrocarbons: The effects of chain-length, methyl-branching and unsaturation. Comparative Biochemistry and Physiology—Part B: Biochemistry and Molecular Biology 112: 243–249.

    Article  Google Scholar 

  • Gibbs, A.G. 1998. Water-proofing properties of cuticular lipids. American Zoologist 38: 471–482.

    Article  CAS  Google Scholar 

  • Gibbs, A.G. 2002. Lipid melting and cuticular permeability: New insights into an old problem. Journal of Insect Physiology 48: 391–400.

    Article  CAS  PubMed  Google Scholar 

  • Gibbs, A.G. 2007. Waterproof cockroaches: The early work of J. A. Ramsay. Journal of Experimental Biology 210: 921–922.

    Article  PubMed  Google Scholar 

  • Gołębiowski, M., M.I. Boguś, M. Paszkiewicz, and P. Stepnowski. 2010. The composition of the free fatty acids from Dendrolimus pini exuviae. Journal of Insect Physiology 56: 391–397.

    Article  CAS  PubMed  Google Scholar 

  • Gołębiowski, M., M.I. Boguś, M. Paszkiewicz, W. Wieloch, E. Włóka, and P. Stepnowski. 2012. The composition of the cuticular and internal free fatty acids and alcohols from Lucilia sericata males and females. Lipids 47: 613–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gołębiowski, M., E. Malinski, M.I. Boguś, J. Kumirska, and P. Stepnowski. 2008. The cuticular fatty acids of Calliphora vicina, Dendrolimus pini and Galleria mellonella larvae and their role in resistance to fungal infection. Insect Biochemistry and Molecular Biology 38: 619–627.

    Article  CAS  PubMed  Google Scholar 

  • Gundi, V.A.K.B., G. Narasimha, and B.R. Reddy. 2005. Interaction effects of insecticides on microbial populations and dehydrogenase activity in a black clay soil. Journal of Environmental Science and Health B 40: 269–283.

    Article  CAS  Google Scholar 

  • Hadley, N.F. 1994. Water Relations of Terrestrial Arthropods. San Diego: Academic Press.

    Google Scholar 

  • Jabbar, A., S.Z. Masud, Z. Parveen, and M. Ali. 1993. Pesticide residues in cropland soils and shallow groundwater in Punjab Pakistan. Bulletin of Environmental Contamination and Toxicology 51: 268–273.

    Article  CAS  PubMed  Google Scholar 

  • Joshi, A.K.R., and P.S. Rajini. 2012. Hyperglycemic and stressogenic effects of monocrotophos in rats: Evidence for the involvement of acetylcholinesterase inhibition. Experimental and Toxicologic Pathology 64: 115–120.

    Article  CAS  PubMed  Google Scholar 

  • Karmakar, A., and A. Barik. 2016. Solena amplexicaulis (Cucurbitaceae) flower surface wax influencing attraction of a generalist insect herbivore, Aulacophora foveicollis (Coleoptera: Chrysomelidae). International Journal of Tropical Insect Science 36: 70–81.

    Article  Google Scholar 

  • Karmakar, A., U. Malik, and A. Barik. 2016a. Effects of leaf epicuticular wax compounds from Solena amplexicaulis (Lam.) Gandhi on olfactory responses of a generalist insect herbivore. Allelopathy Journal 37: 253–272.

    Google Scholar 

  • Karmakar, A., A. Mukherjee, and A. Barik. 2016b. Floral volatiles with colour cues from two cucurbitaceous plants causing attraction of Aulacophora foveicollis. Entomologia Experimentalis et Applicata 158: 133–141.

    Article  CAS  Google Scholar 

  • Kazi, A.I., and A. Oommen. 2012. Monocrotophos induced oxidative damage associates with severe acetylcholinesterase inhibition in rat brain. NeuroToxicology 33: 156–161.

    Article  CAS  PubMed  Google Scholar 

  • Kerwin, J.L. 1984. Fatty acid regulation of the germination of Erynia variabilis conidia on adults and puparia of the lesser housefly, Fannia canicularis. Canadian Journal of Microbiology 30: 158–161.

    Article  CAS  Google Scholar 

  • Kranthi, K.R., D.R. Jadhav, R.R. Wanjari, S. Shakir Ali, and D. Russell. 2001. Carbamate and organophosphate resistance in cotton pests in India, 1995 to 1999. Bulletin of Entomological Research 91: 37–46.

    CAS  PubMed  Google Scholar 

  • Lockey, K.H. 1988. Lipids of the insect cuticle: Origin, composition and function. Comparative Biochemistry and Physiology—Part B: Comparative Biochemistry 89: 595–645.

    Article  Google Scholar 

  • Majumder, S.P., and A.C. Das. 2016. Phosphate-solubility and phosphatase activity in Gangetic alluvial soil as influenced by organophosphate insecticide residues. Ecotoxicology and Environmental Safety 126: 56–61.

    Article  CAS  PubMed  Google Scholar 

  • Malik, U., and A. Barik. 2015. Free fatty acids from the weed, Polygonum orientale leaves for attraction of the potential biocontrol agent, Galerucella placida (Coleoptera: Chrysomelidae). Biocontrol Science and Technology 25: 593–607.

    Article  Google Scholar 

  • Malik, U., A. Karmakar, and A. Barik. 2016. Attraction of the potential biocontrol agent Galerucella placida (Coleoptera: Chrysomelidae) to the volatiles of Polygonum orientale (Polygonaceae) weed leaves. Chemoecology 26: 45–58.

    Article  CAS  Google Scholar 

  • Mitra, S., N. Sarkar, and A. Barik. 2017. Long-chain alkanes and fatty acids from Ludwigia octovalvis weed leaf surface waxes as short-range attractant and ovipositional stimulant to Altica cyanea (Weber) (Coleoptera: Chrysomelidae). Bulletin of Entomological Research 107: 391–400.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, A., and A. Barik. 2014. Long-chain free fatty acids from Momordica cochinchinensis Spreng flowers as allelochemical influencing the attraction of Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae). Allelopathy Journal 33: 255–266.

    Google Scholar 

  • Mukherjee, A., A. Karmakar, and A. Barik. 2017. Bionomics of Momordica cochinchinensis fed Aulacophora foveicollis (Coleoptera: Chrysomelidae). Proceedings of the Zoological Society 70: 81–87.

    Article  Google Scholar 

  • Mukherjee, A., N. Sarkar, and A. Barik. 2013. Alkanes in flower surface waxes of Momordica cochinchinensis influence attraction to Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae). Neotropical Entomology 42: 366–371.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, A., N. Sarkar, and A. Barik. 2014. Long-chain free fatty acids from Momordica cochinchinensis leaves as attractants to its insect pest, Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae). Journal of Asia-Pacific Entomology 17: 229–234.

    Article  CAS  Google Scholar 

  • Mukherjee, A., N. Sarkar, and A. Barik. 2015a. Momordica cochinchinensis (Cucurbitaceae) leaf volatiles: semiochemicals for host location by the insect pest, Aulacophora foveicollis (Coleoptera: Chrysomelidae). Chemoecology 25: 93–104.

    Article  CAS  Google Scholar 

  • Mukherjee, A., N. Sarkar, and A. Barik. 2015b. Leaf surface n-alkanes of Momordica cochinchinensis Spreng as short-range attractants for its insect pest, Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae). Allelopathy Journal 36: 109–122.

    Google Scholar 

  • Mundhe, A.Y., and S.V. Pandit. 2014. Assessment of toxicity of monocrotophos in freshwater bivalve, Lamellidens marginalis, using different markers. Toxicology International 21: 51–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrot, J., M. Gawlak, J. Szafranek, B. Szafranek, E. Synak, J.R. Warchalewski, D. Piasecka-Kwiatkowska, W. Błaszczak, T. Jeliński, and J. Fornal. 2010. The effect of wheat grain composition, cuticular lipids and kernel surface microstructure on feeding, egg-laying, and the development of the granary weevil, Sitophilus granarius (L.). Journal of Stored Products Research 46: 133–141.

    Article  CAS  Google Scholar 

  • Nelson, D.R., and L.D. Charlet. 2003. Cuticular hydrocarbons of the sunflower beetle, Zygogramma exclamationis. Comparative Biochemistry and Physiology—Part B: Biochemistry and Molecular Biology 135: 273–284.

    Article  CAS  Google Scholar 

  • Nelson, D.R., D.L. Olson, and C.L. Fatland. 2002. Cuticular hydrocarbons of the flea beetles, Aphthona lacertosa and Aphthona nigriscutis, biocontrol agents for leafy spurge (Euphorbia esula). Comparative Biochemistry and Physiology—Part B: Biochemistry and Molecular Biology 133: 337–350.

    Article  Google Scholar 

  • Pamanji, R., M.S. Bethu, B. Yashwanth, S. Leelavathi, and J.V. Rao. 2015. Developmental toxic effects of monocrotophos, an organophosphorous pesticide, on zebrafish (Danio rerio) embryos. Environmental Science and Pollution Research 22: 7744–7753.

    Article  CAS  PubMed  Google Scholar 

  • Paszkiewicz, M., A. Sikora, M.I. Boguś, E. Włόka, P. Stepnowski, and M. Gołębiowski. 2016. Effect of exposure to chlorpyrifos on the cuticular and internal lipid composition of Blattella germanica males. Insect Science 23: 94–104.

    Article  CAS  PubMed  Google Scholar 

  • Pedrini, N., S.J. Mijailovsky, J.R. Girotti, R. Stariolo, R.M. Cardozo, A. Gentile, and M.P. Juárez. 2009. Control of pyrethroid-resistant Chagas disease vectors with entomopathogenic fungi. PLoS Neglected Tropical Disease 3: e434.

    Article  CAS  Google Scholar 

  • Rahaman, M.A., and M.D.H. Prodhan. 2007. Effects of net barrier and synthetic pesticides on red pumpkin beetle and yield of cucumber. International Journal of Sustainable Crop Production 2: 30–34.

    Google Scholar 

  • Raman, K., and R.S. Annadurai. 1985. Host selection and food utilization of the red pumpkin beetle, Raphidopalpa foveicollis (Lucas) (Chrysomelidae: Coleoptera). Proceedings: Animal Sciences 94: 547–556.

  • Rangaswamy, V., P.B. Charyulu, and K. Venkateswarlu. 1989. Effect of monocrotophos and quinalphos on soil population and nitrogen-fixing activity of Azospirillum sp. Biomedical and Environmental Science 2: 305–311.

    CAS  Google Scholar 

  • Remia, K.M., S. Logaswamy, K. Logankumar, and D. Rajmohan. 2008. Effect of an insecticide (monocrotophos) on some biochemical constituents of the fish Tilapia mossambica. Pollution Research 27: 523–526.

    CAS  Google Scholar 

  • Reue, K. 2011. A thematic review series: Lipid droplet storage and metabolism: From yeast to man. Journal of Lipid Research 52: 1865–1868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rupa, D.S., P.V. Lakshman Rao, P.P. Reddy, and O.S. Reddi. 1988. In vitro effect of monocrotophos on human lymphocytes. Bulletin of Environmental Contamination and Toxicology 41: 737–741.

    Article  CAS  PubMed  Google Scholar 

  • Sankhwar, M.L., R.S. Yadav, R.K. Shukla, D. Singh, R.W. Ansari, A.B. Pant, D. Parmar, and V.K. Khanna. 2013. Monocrotophos induced oxidative stress and alterations in brain dopamine and serotonin receptors in young rats. Toxicology and Industrial Health 32: 422–436.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, N., and A. Barik. 2015. Free fatty acids from Momordica charantia L. flower surface waxes influencing attraction of Epilachna dodecastigma (Wied.) (Coleoptera: Coccinellidae). International Journal of Pest Management 61: 47–53.

    Article  CAS  Google Scholar 

  • Sarkar, N., A. Karmakar, and A. Barik. 2016. Volatiles of Solena amplexicaulis (Lam.) Gandhi leaves influencing attraction of two generalist insect herbivores. Journal of Chemical Ecology 42: 1004–1015.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, N., U. Malik, and A. Barik. 2014. n–alkanes in epicuticular waxes of Vigna unguiculata (L.) Walp. leaves. Acta Botanica Gallica 161: 373–377.

    Article  CAS  Google Scholar 

  • Simpson, I.C., and P.A. Roger. 1995. The impact of pesticides on non-target aquatic invertebrates in wetland ricefields: A review. In Impact of pesticides on farmer health and the rice environment, ed. P.L. Pingali and P.A. Roger, 249–270. Philippines: IRRI Editions.

    Chapter  Google Scholar 

  • Singh, D., and C.K. Gill. 1979. Estimation of losses in growth and yield of muskmelon due to Aulacophora foveicollis Lucas. Indian Journal of Entomology 44: 294–295.

    Google Scholar 

  • Singh, S., A. Ranjit, S. Parthasarathy, N. Sharma, and P. Bambery. 2004. Organophosphate induced delayed neuropathy: Report of two cases. Neurology India 52: 525–526.

    PubMed  Google Scholar 

  • Sinha, S.N., and A.K. Chakrabarti. 1983. Effect of seed treatment with carbofuran on the incidence of red pumpkin beetle, Raphidopalpa foveicollis Lucas on cucurbits. Indian Journal of Entomology 45: 145–151.

    CAS  Google Scholar 

  • Skripsky, T., and R. Loosli. 1994. Toxicology of monocrotophos. Reviews of Environmental Contamination and Toxicology 139: 13–39.

    CAS  PubMed  Google Scholar 

  • Stanley-Samuelson, D.W., R.A. Jurenka, C. Crips, G.J. Blomquist, and M. de Renobales. 1988. Fatty acids in insects: composition, metabolism and biological significance. Archives of Insect Biochemistry and Physiology 9: 1–33.

    Article  CAS  Google Scholar 

  • Tariq, M.I., S. Afzal, and I. Hussain. 2004. Pesticides in shallow groundwater of Bahawalnagar, Muzafargarh, D.G. Khan and Rajan Pur districts of Punjab, Pakistan. Environment International 30: 471–479.

    Article  CAS  PubMed  Google Scholar 

  • Velmurugan, B., M. Selvanayagam, E.I. Cengiz, and E. Unlu. 2007. The effects of monocrotophos to different tissues of freshwater fish Cirrhinus mrigala. Bulletin of Environmental Contamination and Toxicology 78: 450–454.

    Article  CAS  PubMed  Google Scholar 

  • Vijay Kumar, B., and N.V. Prasad. 2013. Effect of the pesticide monocrotophos on the osmoregulation of a brackish water oligochaete, Pontodrilus bermudensis (Beddard) in relation to salinity variations. International Journal of Bioassays 2: 964–970.

    CAS  Google Scholar 

  • Vijayavel, K., E.F. Rani, C. Anbuselvam, and M.P. Balasubramanian. 2006. Interactive effect of monocrotophos and ammonium chloride on the freshwater fish Oreochromis mossambicus with reference to lactate/pyruvate ratio. Pesticide Biochemistry and Physiology 86: 157–161.

    Article  CAS  Google Scholar 

  • Waterhouse, D.F., and K.R. Norris. 1987. Biological Control: Pacific Prospects. Melbourne: Inkata Press.

    Google Scholar 

  • WHO 2009. Health implications from monocrotophos use: a review of the evidence in India.

  • Wu, Y., J. Shen, J. Chen, X. Lin, and A. Li. 1996. Evaluation of two resistance monitoring methods in Helicoverpa armigera: Topical application and leaf dipping method. Journal of Plant Protection 22: 3–6.

    Google Scholar 

  • Wu, Y., J. Shen, F. Tan, and Z. You. 1995. Mechanism of fenvalerate resistance in Helicoverpa armigera (Hübner). Journal of Nanjing Agricultural University 18: 63–68.

    CAS  Google Scholar 

  • Yen, C.-L.E., S.J. Stone, S. Koliwad, C. Harris, and R.V. Farese Jr. 2008. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. Journal of Lipid Research 49: 2283–2301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zar, J.H. 2010. Biostatistical Analysis. New Jersey: Prentice Hall.

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Janakiraman Poorani, Principal Scientist, National Research Centre for Banana, Tamilnadu for identifying the insect. We are thankful to DST PURSE Phase-II for providing necessary instrumental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anandamay Barik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmakar, A., Mitra, S., Mukherjee, A. et al. Variations in Composition of Alkanes and Free Fatty Acids in Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) on Exposure to Monocrotophos. Proc Zool Soc 72, 301–312 (2019). https://doi.org/10.1007/s12595-018-0271-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12595-018-0271-1

Keywords

Navigation